2 research outputs found

    Measurement of severity of heat stress in sheep

    No full text
    Animals show optimum growth, health, and productivity within a range of environmental temperatures. Exposure of the sheep to higher temperature leads to heat stress, which negatively affects their well-being and productivity. In addition to ambient temperature (AT), other climatic factors like humidity (RH), wind speed (WS), and solar radiation (SR) also influence the degree of heat stress in sheep. Further, climate change caused a higher rate of temperature increase in the tropical region. Hence, there is an urgent necessity to develop a simple, reliable, and easy method to assess the degree of heat stress in sheep particularly during summer. In the mid-twentieth century, temperature-humidity index (THI) was introduced to evaluate the severity of summer stress and was extended to dairy animals as a tool to explain the welfare of the animals. Moreover, several THI equations were developed by various scientists based on prevailing AT and RH. However, the main drawback of the THI was that it did not account for other weather parameters like WS and SR, even though they also equally influenced the level of heat stress in animals. Research efforts pertain to establishing a suitable thermal index by incorporating all cardinal weather parameters. With this background, heat load index (HLI) was developed as an alternative to THI relating RH, WS, and black-globe temperature (accounts both AT and SR). The few other modern indices available to assess the severity of heat stress in sheep are black-globe temperature-humidity index (BGTHI), thermal comfort index (TCI), and global comprehension index (GCI). In addition to weather indices, some physiological indices are also used to assess heat stress in sheep. Physiological responses like rectal temperature and respiration rate are considered as good indicators of heat stress in sheep. Moreover, strong correlations between blood parameters like hemoglobin, packed cell volume, and endocrine parameters such as cortisol and thyroid hormones production are well established in sheep. Further, genomics and proteomics tools are providing advanced options to evaluate the adaptation processes of sheep. Some of the genes identified in sheep during heat stress are heat shock protein, heat shock factor-1, thyroid hormone receptor, and prolactin receptor genes. Besides, the identified thermo-tolerant genes could be used as an ideal marker for assessing the level of heat stress and may be further utilized for marker-assisted selection breeding programs to develop superior thermo-tolerant breeds

    Response of Domestic Animals to Climate Challenges

    No full text
    corecore