1,672 research outputs found
Gaian bottlenecks and planetary habitability maintained by evolving model biospheres: The ExoGaia model
This is the author accepted manuscript. The final version is available from the publisher via the DOI in this record.The search for habitable exoplanets inspires the question - how do habitable planets form? Planet habitability models traditionally focus on abiotic processes and neglect a biotic response to changing conditions on an inhabited planet. The Gaia hypothesis postulates that life influences the Earth's feedback mechanisms to form a self-regulating system, and hence that life can maintain habitable conditions on its host planet. If life has a strong influence, it will have a role in determining a planet's habitability over time. We present the ExoGaia model - a model of simple 'planets' host to evolving microbial biospheres. Microbes interact with their host planet via consumption and excretion of atmospheric chemicals. Model planets orbit a 'star' which provides incoming radiation, and atmospheric chemicals have either an albedo, or a heat-trapping property. Planetary temperatures can therefore be altered by microbes via their metabolisms. We seed multiple model planets with life while their atmospheres are still forming and find that the microbial biospheres are, under suitable conditions, generally able to prevent the host planets from reaching inhospitable temperatures, as would happen on a lifeless planet. We find that the underlying geochemistry plays a strong role in determining long-term habitability prospects of a planet. We find five distinct classes of model planets, including clear examples of 'Gaian bottlenecks' - a phenomenon whereby life either rapidly goes extinct leaving an inhospitable planet, or survives indefinitely maintaining planetary habitability. These results suggest that life might play a crucial role in determining the long-term habitability of planets.We thank the Gaia Charity and the University of Exeter for their support of this work
Alternative mechanisms for Gaia
This is the author accepted manuscript. The final version is available from Elsevier via the DOI in this recordA long-standing objection to the Gaia hypothesis has been a perceived lack of plausible mechanisms by which life on Earth could come to regulate its abiotic environment. A null hypothesis is survival by pure chance, by which any appearance of regulation on Earth is illusory and the persistence of life simply reflects the weak anthropic principle - it must have occurred for intelligent observers to ask the question. Recent work has proposed that persistence alone increases the chance that a biosphere will acquire further persistence-enhancing properties. Here we use a simple quantitative model to show that such ‘selection by survival alone’ can indeed increase the probability that a biosphere will persist in the future, relative to a baseline of pure chance. Adding environmental feedback to this model shows either an increased or decreased survival probability depending on the initial conditions. Feedback can hinder early life becoming established if initial conditions are poor, but feedback can also prevent systems from diverging too far from optimum environmental conditions and thus increase survival rates. The outstanding question remains the relative importance of each mechanism for the historical and continued persistence of life on Earth.Gaia CharityUniversity of Exete
Multiple states of environmental regulation in well-mixed model biospheres.
This is the author accepted manuscript. The final version is available from Elsevier via the DOI in this record.The Gaia hypothesis postulates that life influences Earth's feedback mechanisms to form a self regulating system. This provokes the question: how can global self-regulation evolve? Most models demonstrating environmental regulation involving life have relied on alignment between local selection and global regulation. In these models environment-improving individuals or communities spread to outcompete environment degrading individuals/communities, leading to global regulation, but this depends on local differences in environmental conditions. In contrast, well-mixed components of the Earth system, such as the atmosphere, lack local environmental differentiation. These previous models do not explain how global regulation can emerge in a system with no well defined local environment, or where the local environment is overwhelmed by global effects. We present a model of self-regulation by 'microbes' in an environment with no spatial structure. These microbes affect an abiotic 'temperature' as a byproduct of metabolism. We demonstrate that global self-regulation can arise in the absence of spatial structure in a diverse ecosystem without localised environmental effects. We find that systems can exhibit nutrient limitation and two temperature limitation regimes where the temperature is maintained at a near constant value. During temperature regulation, the total temperature change caused by the microbes is kept near constant by the total population expanding or contracting to absorb the impacts of new mutants on the average affect on the temperature per microbe. Dramatic shifts between low temperature regulation and high temperature regulation can occur when a mutant arises that causes the sign of the temperature effect to change. This result implies that self-regulating feedback loops can arise without the need for spatial structure, weakening criticisms of the Gaia hypothesis that state that with just one Earth, global regulation has no mechanism for developing because natural selection requires selection between multiple entities.We thank the Gaia Charity and the University of Exeter for their support of this work
Multiple states of environmental regulation in well-mixed modle biospheres.
The Gaia hypothesis postulates that life influences Earth’s feedback mechanisms to form a self-regulating system. This provokes the question: how can global self-regulation evolve? Most models demonstrating environmental regulation involving life have relied on alignment between local selection and global regulation. In these models environment-improving individuals or communities spread to outcompete environment degrading individuals / communities, leading to global regulation, but this depends on local differences in environmental conditions. In contrast, well-mixed components of the Earth system, such as the atmosphere, lack local environmental differentiation. These previous models do not explain how global regulation can emerge in a system with no well-defined local environment, or where the local environment is overwhelmed by global effects. We present a model of self-regulation by ‘microbes’ in an environment with no spatial structure. These microbes affect an abiotic ‘temperature’ as a byproduct of metabolism.
We demonstrate that global self-regulation can arise in the absence of spatial structure in a diverse ecosystem without localised environmental effects. We find that systems can exhibit nutrient limitation and two temperature limitation regimes where the temperature is maintained at a near constant value. During temperature regulation, the total temperature change caused by the microbes is kept near constant by the total population expanding or contracting to absorb the impacts of new mutants on the average affect on the temperature per microbe. Dramatic shifts between low temperature regulation and high temperature regulation can occur when a mutant arises that causes the sign of the temperature effect to change. This result implies that self-regulating feedback loops can arise without the need for spatial structure, weakening criticisms of the Gaia hypothesis that state that with just one Earth, global regulation has no mechanism for developing because natural selection requires selection between multiple entitie
Distinct emphysema subtypes defined by quantitative CT analysis are associated with specific pulmonary matrix metalloproteinases.
BACKGROUND: Emphysema is characterised by distinct pathological sub-types, but little is known about the divergent underlying aetiology. Matrix-metalloproteinases (MMPs) are proteolytic enzymes that can degrade the extracellular matrix and have been identified as potentially important in the development of emphysema. However, the relationship between MMPs and emphysema sub-type is unknown. We investigated the role of MMPs and their inhibitors in the development of emphysema sub-types by quantifying levels and determining relationships with these sub-types in mild-moderate COPD patients and ex/current smokers with preserved lung function. METHODS: Twenty-four mild-moderate COPD and 8 ex/current smokers with preserved lung function underwent high resolution CT and distinct emphysema sub-types were quantified using novel local histogram-based assessment of lung density. We analysed levels of MMPs and tissue inhibitors of MMPs (TIMPs) in bronchoalveolar lavage (BAL) and assessed their relationship with these emphysema sub-types. RESULTS: The most prevalent emphysema subtypes in COPD subjects were mild and moderate centrilobular (CLE) emphysema, while only small amounts of severe centrilobular emphysema, paraseptal emphysema (PSE) and panlobular emphysema (PLE) were present. MMP-3, and -10 associated with all emphysema sub-types other than mild CLE, while MMP-7 and -8 had associations with moderate and severe CLE and PSE. MMP-9 also had associations with moderate CLE and paraseptal emphysema. Mild CLE occurred in substantial quantities irrespective of whether airflow obstruction was present and did not show any associations with MMPs. CONCLUSION: Multiple MMPs are directly associated with emphysema sub-types identified by CT imaging, apart from mild CLE. This suggests that MMPs play a significant role in the tissue destruction seen in the more severe sub-types of emphysema, whereas early emphysematous change may be driven by a different mechanism. TRIAL REGISTRATION: Trial registration number NCT01701869
Selection for Gaia across multiple scales
This is the author accepted manuscript. The final version is available from Elsevier via the DOI in this record.Recently postulated mechanisms and models can help explain the enduring ‘Gaia’ puzzle of environmental regulation mediated by life. Natural selection can produce nutrient recycling at local scales and regulation of heterogeneous environmental variables at ecosystem scales. However, global-scale environmental regulation involves a temporal and spatial decoupling of effects from actors that makes conventional evolutionary explanations problematic. Instead, global regulation can emerge by a process of ‘sequential selection’ in which systems that destabilize their environment are short-lived and result in extinctions and reorganizations until a stable attractor is found. Such persistence-enhancing properties can in turn increase the likelihood of acquiring further persistence-enhancing properties through ‘selection by survival alone’. Thus, Earth system feedbacks provide a filter for persistent combinations of macroevolutionary innovations.T.M.L.
was supported by a Royal Society Wolfson Research Merit Award. A.E.N. was supported by
Gaia Charity and the University of Exeter
No Detectable Fertility Benefit from a Single Additional Mating in Wild Stalk-Eyed Flies
Background: Multiple mating by female insects is widespread, and the explanation(s) for repeated mating by females has been the subject of much discussion. Females may profit from mating multiply through direct material benefits that increase their own reproductive output, or indirect genetic benefits that increase offspring fitness. One particular direct benefit that has attracted significant attention is that of fertility assurance, as females often need to mate multiply to achieve high fertility. This hypothesis has never been tested in a wild insect population.Methodology/Principal Findings: Female Malaysian stalk-eyed flies (Teleopsis dalmanni) mate repeatedly during their lifetime, and have been shown to be sperm limited under both laboratory and field conditions. Here we ask whether receiving an additional mating alleviates sperm limitation in wild females. In our experiment one group of females received a single additional mating, while a control group received an interrupted, and therefore unsuccessful, mating. Females that received an additional mating did not lay more fertilised eggs in total, nor did they lay proportionately more fertilised eggs. Female fertility declined significantly through time, demonstrating that females were sperm limited. However, receipt of an additional mating did not significantly alter the rate of this decline.Conclusions/Significance: Our data suggest that the fertility consequences of a single additional mating were small. We discuss this effect (or lack thereof), and suggest that it is likely to be attributed to small ejaculate size, a high proportion of failed copulations, and the presence of X-linked meiotic drive in this species
In the best interests of the deceased: A possible justification for organ removal without consent?
Opt-out systems of postmortem organ procurement are often supposed to be justifiable by presumed consent, but this justification turns out to depend on a mistaken mental state conception of consent. A promising alternative justification appeals to the analogical situation that occurs when an emergency decision has to be made about medical treatment for a patient who is unable to give or withhold his consent. In such cases, the decision should be made in the best interests of the patient. The analogous suggestion to be considered, then, is, if the potential donor has not registered either his willingness or his refusal to donate, the probabilities that he would or would not have preferred the removal of his organs need to be weighed. And in some actual cases the probability of the first alternative may be greater. This article considers whether the analogy to which this argument appeals is cogent, and concludes that there are important differences between the emergency and the organ removal cases, both as regards the nature of the interests involved and the nature of the right not to be treated without one’s consent. Rather, if opt-out systems are to be justified, the needs of patients with organ failure and/or the possibility of tacit consent should be considered
Structure-Based Design of Potent and Selective Leishmania N-Myristoyltransferase Inhibitors
Inhibitors of Leishmania N-myristoyltransferase (NMT), a potential target for the treatment of leishmaniasis, obtained from a high-throughput screen, were resynthesized to validate activity. Crystal structures bound to Leishmania major NMT were obtained, and the active diastereoisomer of one of the inhibitors was identified. On the basis of structural insights, enzyme inhibition was increased 40-fold through hybridization of two distinct binding modes, resulting in novel, highly potent Leishmania donovani NMT inhibitors with good selectivity over the human enzyme
Spectral Pattern Recognition by a Two-Layer Perceptron: Effects of Training Set Size
Pattern recognition in urban areas is one of the most challenging issues in
classifying satellite remote sensing data. Parametric pixel-by-pixel classification
algorithms tend to perform poorly in this context. This is because urban areas
comprise a complex spatial assemblage of disparate land cover types - including
built structures, numerous vegetation types, bare soil and water bodies. Thus,
there is a need for more powerful spectral pattern recognition techniques,
utilizing pixel-by-pixel spectral information as the basis for automated urban
land cover detection. This paper adopts the multi-layer perceptron classifier
suggested and implemented in [5]. The objective of this study is to analyse the
performance and stability of this classifier - trained and tested for supervised
classification (8 a priori given land use classes) of a Landsat-5 TM image
(270 x 360 pixels) from the city of Vienna and its northern surroundings
- along with varying the training data set in the single-training-site case.
The performance is measured in terms of total classification, map user's and
map producer's accuracies. In addition, the stability with initial parameter
conditions, classification error matrices, and error curves are analysed in some
detail. (authors' abstract)Series: Discussion Papers of the Institute for Economic Geography and GIScienc
- …