43 research outputs found
From DNA sequence to application: possibilities and complications
The development of sophisticated genetic tools during the past 15 years have facilitated a tremendous increase of fundamental and application-oriented knowledge of lactic acid bacteria (LAB) and their bacteriophages. This knowledge relates both to the assignments of open reading frames (ORF’s) and the function of non-coding DNA sequences. Comparison of the complete nucleotide sequences of several LAB bacteriophages has revealed that their chromosomes have a fixed, modular structure, each module having a set of genes involved in a specific phase of the bacteriophage life cycle. LAB bacteriophage genes and DNA sequences have been used for the construction of temperature-inducible gene expression systems, gene-integration systems, and bacteriophage defence systems.
The function of several LAB open reading frames and transcriptional units have been identified and characterized in detail. Many of these could find practical applications, such as induced lysis of LAB to enhance cheese ripening and re-routing of carbon fluxes for the production of a specific amino acid enantiomer. More knowledge has also become available concerning the function and structure of non-coding DNA positioned at or in the vicinity of promoters. In several cases the mRNA produced from this DNA contains a transcriptional terminator-antiterminator pair, in which the antiterminator can be stabilized either by uncharged tRNA or by interaction with a regulatory protein, thus preventing formation of the terminator so that mRNA elongation can proceed. Evidence has accumulated showing that also in LAB carbon catabolite repression in LAB is mediated by specific DNA elements in the vicinity of promoters governing the transcription of catabolic operons.
Although some biological barriers have yet to be solved, the vast body of scientific information presently available allows the construction of tailor-made genetically modified LAB. Today, it appears that societal constraints rather than biological hurdles impede the use of genetically modified LAB.
The Carbon Assimilation Network in Escherichia coli Is Densely Connected and Largely Sign-Determined by Directions of Metabolic Fluxes
Gene regulatory networks consist of direct interactions but also include indirect interactions mediated by metabolites and signaling molecules. We describe how these indirect interactions can be derived from a model of the underlying biochemical reaction network, using weak time-scale assumptions in combination with sensitivity criteria from metabolic control analysis. We apply this approach to a model of the carbon assimilation network in Escherichia coli. Our results show that the derived gene regulatory network is densely connected, contrary to what is usually assumed. Moreover, the network is largely sign-determined, meaning that the signs of the indirect interactions are fixed by the flux directions of biochemical reactions, independently of specific parameter values and rate laws. An inversion of the fluxes following a change in growth conditions may affect the signs of the indirect interactions though. This leads to a feedback structure that is at the same time robust to changes in the kinetic properties of enzymes and that has the flexibility to accommodate radical changes in the environment
THE GLOBAL REGULATORY PROTEIN FRUR MODULATES THE DIRECTION OF CARBON FLOW IN ESCHERICHIA-COLI
Escherichia coli fructose repressor, FruR, is known to regulate expression of several genes concerned with carbon utilization. Using a previously derived consensus sequence for FruR binding, additional potential operators were identified and tested for FruR binding in DNA band migration retardation assays. Operators in the control regions of operons concerned with carbon metabolism bound FruR, while those in operons not concerned with carbon metabolism did not. In vivo assays with transcriptional lacZ fusions showed that FruR controls the expression of FruR operator-containing genes encoding key enzymes of virtually every major pathway of carbon metabolism. Moreover, a fruR null mutation altered the rates of utilization of at least 36 carbon sources. In general, oxidation rates for glycolytic substances were enhanced while those for gluconeogenic substances were depressed. Alignment of FruR operators revealed that the consensus sequence for FruR binding is the same for operons that are activated and repressed by FruR and permitted formulation of a revised FruR-binding consensus sequence. The reported observations indicate that FruR modulates the direction of carbon flow by transcriptional activation of genes encoding enzymes concerned with oxidative and gluconeogenic carbon flow and by repression of those concerned with fermentative carbon flow
In vitro binding of the pleiotropic transcriptional regulatory protein, FruR, to the fru, pps, ace, pts and icd operons of Escherichia coli and Salmonella typhimurium.
International audienceEvidence has been presented suggesting that the fructose repressor, FruR, is a pleiotropic transcriptional regulatory protein controlling the expression of numerous operons concerned with carbon metabolism in Escherichia coli and Salmonella typhimurium. We have conducted in vitro DNA binding studies to ascertain the nature of the DNA sequences to which FruR binds. Employing both DNA band migration retardation and DNase I footprint analyses, FruR was found to bind to two operators within the regulatory region preceding the structural genes of the fructose operon, fruB(MH)KA. These two operators, O1 and O2, comprise nearly identical palindromes of 12 bp with a half-site of TGAAAC. The binding of FruR to these inverted repeats was found to be reversed by inclusion of micromolar concentrations of fructose-1-phosphate. The two operators are located between the single putative promoter of the fructose operon and the translational initiation site of the fruB gene. Other regulated operons were shown to bind FruR to a single site upstream of the first structural gene as follows: (1) ppsA (positive regulation); (2) icd (positive regulation); (3) aceB (positive regulation); and (4) pts (negative regulation). In all cases, low concentrations of fructose-1-phosphate displaced the protein from the DNA. The binding sites were determined, and a FruR consensus sequence was established. Computer searches revealed the presence of this sequence in numerous functionally diverse operons, implying that FruR is a global transcriptional regulatory protein in enteric bacteria.Evidence has been presented suggesting that the fructose repressor, FruR, is a pleiotropic transcriptional regulatory protein controlling the expression of numerous operons concerned with carbon metabolism in Escherichia coli and Salmonella typhimurium. We have conducted in vitro DNA binding studies to ascertain the nature of the DNA sequences to which FruR binds. Employing both DNA band migration retardation and DNase I footprint analyses, FruR was found to bind to two operators within the regulatory region preceding the structural genes of the fructose operon, fruB(MH)KA. These two operators, O1 and O2, comprise nearly identical palindromes of 12 bp with a half-site of TGAAAC. The binding of FruR to these inverted repeats was found to be reversed by inclusion of micromolar concentrations of fructose-1-phosphate. The two operators are located between the single putative promoter of the fructose operon and the translational initiation site of the fruB gene. Other regulated operons were shown to bind FruR to a single site upstream of the first structural gene as follows: (1) ppsA (positive regulation); (2) icd (positive regulation); (3) aceB (positive regulation); and (4) pts (negative regulation). In all cases, low concentrations of fructose-1-phosphate displaced the protein from the DNA. The binding sites were determined, and a FruR consensus sequence was established. Computer searches revealed the presence of this sequence in numerous functionally diverse operons, implying that FruR is a global transcriptional regulatory protein in enteric bacteria
In vitro asymmetric binding of the pleiotropic regulatory protein, FruR, to the ace operator controlling glyoxylate shunt enzyme synthesis.
International audienceThe fruR gene of Escherichia coli, which encodes the regulatory protein FruR, was cloned in the pT7-5 expression vector so as to overproduce a protein tagged with 6 histidine residues. By using a one-step chromatographic procedure, FruR was purified to near-homogeneity. Analysis of the protein under both denaturing and nondenaturing conditions indicated that it is a tetramer with a molecular mass of about 150 kilodaltons. The positions of interference between FruR and the operator of the acetate operon were examined. The number and nature of the nucleotides essential for FruR binding were determined by several different techniques: base methylation with dimethyl sulfate, base removal by formic acid and hydrazine, uracil interference, and hydroxyl radical footprinting. It was observed that FruR asymmetrically binds to a 16-base pair DNA sequence located 170 base pairs upstream from the transcriptional start point of the ace operon.The fruR gene of Escherichia coli, which encodes the regulatory protein FruR, was cloned in the pT7-5 expression vector so as to overproduce a protein tagged with 6 histidine residues. By using a one-step chromatographic procedure, FruR was purified to near-homogeneity. Analysis of the protein under both denaturing and nondenaturing conditions indicated that it is a tetramer with a molecular mass of about 150 kilodaltons. The positions of interference between FruR and the operator of the acetate operon were examined. The number and nature of the nucleotides essential for FruR binding were determined by several different techniques: base methylation with dimethyl sulfate, base removal by formic acid and hydrazine, uracil interference, and hydroxyl radical footprinting. It was observed that FruR asymmetrically binds to a 16-base pair DNA sequence located 170 base pairs upstream from the transcriptional start point of the ace operon