80 research outputs found

    Detection of human neutrophil elastase (HNE) on wound dressings as marker of inflammation

    Get PDF
    Chronic wound fluids have elevated concentration of human neutrophil elastase (HNE) which can be used as inflammation/infection marker. Our goal is to develop functional materials for fast diagnosis of wound inflammation/infection by using HNE as a specific marker. For that, fluorogenic peptides with a HNE-specific cleavage sequence were incorporated into traditional textile dressings, to allow real-time detection of the wound status. Two different fluorogenic approaches were studied in terms of intensity of the signal generated upon HNE addition: a fluorophore 7-amino-4-trifluormethylcoumarin (AFC) conjugated to a HNE-specific peptide and two fluorophore/quencher pairs (FAM/Dabcyl and EDANS/Dabcyl) coupled to a similar peptide as a Förster resonance energy transfer (FRET) strategy. Also, two immobilization methods were tested: sonochemistry immobilization onto a cotton bandage and glutaraldehyde (GTA)-assisted chemical crosslinking onto a polyamide dressing. The immobilized fluorogenic AFC peptide showed an intense fluorescence emission in the presence of HNE. HNE also induced an enhanced fluorescent signal with the EDANS/Dabcyl FRET peptide which showed to be a more sensitive and effective strategy than the AFC peptide. However, its chemical immobilization onto the polyamide dressing greatly decreased its detection, mainly due to the more difficult access of the enzyme to the cleavage sequence of the immobilized peptide. After optimization of the in situ immobilization, it will be possible to use these fluorescence-functionalized dressings for an effective and specific monitoring of chronic wounds by simply using a portable ultraviolet (UV) light source. We envision that the development of this point-of-care medical device for wound control will have a great impact on patients life quality and reduction of costs on health care system.This study was funded by the European project InFact-Functional materials for fast diagnosis of wound infection (FP7-NMP-2013-SME-7-grant agreement no. 604278). The work done at Centre of Biological Engineering (CEB) was also supported by the Portuguese Foundation for Science and Technology (FCT) under the scope of the strategic funding of UID/BIO/04469/2013 unit, COMPETE 2020 (POCI-01-0145-FEDER-006684) and BioTecNorte operation (NORTE-01-0145-FEDER-000004) funded by European Regional Development Fund under the scope of Norte 2020-Programa Operacional Regional do Norte

    Level of agreement between objectively determined body composition and perceived body image in 6- To 8-year-old South African children- To Body Composition-Isotope Technique study

    Get PDF
    To assess the level of agreement between body size self-perception and actual body size determined by body mass index (BMI) z-score and body fatness measured by the deuterium dilution method (DDM) in South African children aged 6-8 years. A cross-sectional sample of 202 children (83 boys and 119 girls) aged 6-8 years from the Body Composition-Isotope Technique study (BC-IT) was taken. Subjective measures of body image (silhouettes) were compared with the objective measures of BMI z-score and body fatness measured by the DDM. The World Health Organization BMI z-scores were used to classify the children as underweight, normal, overweight, or obese. DDM-measured fatness was classified based on the McCarthy centile curves set at 2nd, 85th and 95th in conjunction with fatness cut-off points of 25% in boys and 30% in girls. Data were analyzed using SPSS v26. Of 202 children, 32.2%, 55.1%, 8.8%, and 2.4% perceived their body size as underweight, normal, overweight, and obese, respectively. Based on BMI z-score, 18.8%, 72.8%, 6.9%, and 1.5% were classified as underweight, normal, overweight, and obese, respectively. Body fatness measurement showed that 2.5%, 48.0%, 21.8%, and 29.7% were underweight, normal weight, overweight, and obese, respectively

    Optical fibres - Beyond the diffraction limit

    No full text
    By adding a tiny hole into the solid-core of a photonic-crystal fibre, scientists have been able to beat the diffraction limit and confine and guide light in the subwavelength regime.Tanya Monr

    Mathematical modeling as an accurate predictive tool in capillary and microstructured fiber manufacture: The effects of preform rotation

    Get PDF
    A method for modeling the fabrication of capillary tubes is developed that includes the effects of preform rotation, and is used to reduce or remove polarization mode dispersion and fiber birefringence. The model is solved numerically, making use of extensive experimental investigations into furnace temperature profiles and silica glass viscosities, without the use of fitting parameters. Accurate predictions of the geometry of spun capillary tubes are made and compared directly with experimental results, showing remarkable agreement and demonstrating that the mathematical modeling of fiber drawing promises to be an accurate predictive tool for experimenters. Finally, a discussion of how this model impacts on the rotation of more general microstructured optical fiber preforms is given. © 2008 IEEE

    The mathematical modelling of rotating capillary tubes for holey-fibre manufacture

    No full text
    Understanding and controlling the manufacturing process of producing ("drawing") microstructured optical fibres ("holey fibres") is of paramount importance in obtaining optimal control of the final fibre geometry and identifying industrially useful production regimes. The high cost of the manufacturing process and the challenge of ensuring reproducible final fibre geometries renders theoretical approaches invaluable. In this study the fluid dynamics of capillary drawing is examined using an extensional-flow asymptotic approach based on the small aspect ratio of the capillary. The key focus of the study is the additional effects that may be introduced by adding fibre rotation to the manufacturing process. Predictions are made concerning the effects of rotation, and a variety of asymptotic limits are examined in order to gain an understanding of the physics involved. Drawing regimes that are useful from a practical point of view are identified and the role of fibre rotation, both as a control measure (that may be used to influence the final geometry of a capillary) and as a means of reducing unwanted effects (such as fibre birefringence and polarisation model dispersion), is discussed. © Springer Science + Business Media B.V. 2007

    Mathematical modelling of the drawing of spun capillary tubes

    No full text
    We describe a fluid mechanics model that has been constructed in order to allow anunderstanding of the drawing of microstructured optical fibres, or 'holey fibres', to be gained, and furtherour ability to predict and control the final fibre geometry. The effects of fibre rotation are included in the model. Predictions are made by solving the final model numerically

    Dipole-fiber system: from single photon source to metadevices

    Full text link
    Radiation of an electric dipole (quantum emitter) in vicinity of optical structures still attracts great interest due to emerging of novel application and technological advances. Here we review our recent work on guided and radiation modes of electric dipole and optical fiber system and its applications from single photon source to metadevices. We demonstrate that the relative position and orientation of the dipole and the core diameter of the optical fiber are the two key defining factors of the coupled system application. We demonstrate that such a coupled system has a vast span of applications in nanophotonics; a single photon source, a high-quality factor sensor and the building block of metadevices

    Modelling fiber drawing: Capillary manufacture

    No full text
    Fiber drawing for capillary manufacture was presented. Microstructured fibers were produced by drawing a macroscopic preform into fiber using a drawing tower. The degree of hole closure was controlled by introducing a pressure difference between air inside and outside the capillary

    Radiated and guided optical waves of a magnetic dipole-nanofiber system

    Full text link
    Nanophotonics–photonic structures with subwavelength features–allow accessing high intensity and localized electromagnetic field and hence is an ideal platform for investigating and exploiting strong lightmatter interaction. In particular, such a strong light-matter interaction requires investigating the interaction of a magnetic dipole with the electromagnetic field– a less-explored topic, which has usually been ignored within the framework of electric dipole approximation. Motivated by recent advances in the emerging field of multipolar nanophotonics, here we develop an analytical model that provides a new insight into analyzing a magnetic dipole and a nanofiber. This method enables us to examine the effect of second term in the multipolar expansion of light-matter interaction, magnetic dipole approximation, with individual guided and radiation modes of the nanofiber. This is a critical key in developing nanophotonic integrated devices based on magnetic nature of light for super-imaging, biosensing, and optical computing

    Optics InfoBase Conference Papers

    Full text link
    We investigate the coupling of the emission of a circularly polarised dipole into the radiation modes of a nanofiber and show symmetry breaking between forward and backward directions
    corecore