13 research outputs found

    Applying blockchain to improve the integrity of the software development process

    Get PDF
    Software development is a complex endeavor that encompasses application and implementation layers with functional (refers to what is done) and non-functional (how is done) aspects. The efforts to scale agile software development practices are not wholly able to address issues such as integrity, which is a crucial non-functional aspect of the software development process. However, if we consider most software failures are Byzantine failures (i.e., where components may fail and there is imperfect information on which a component has failed.) that might impair the operation but do not completely disable the production line. In this paper, we assume software practitioners who cause defects as Byzantine participants and claim that most software failures can be mitigated by viewing software development as the Byzantine Generals Problem. Consequently, we propose a test-driven incentive mechanism based on a blockchain concept to orchestrate the software development process where production is controlled by a similar infrastructure based on the working principles of blockchain. We discuss the model that integrates blockchain with the software development process, and provide some recommendations for future work to address the issues while orchestrating software productio

    Guidelines for the use and interpretation of assays for monitoring autophagy (4th edition)1.

    Get PDF
    In 2008, we published the first set of guidelines for standardizing research in autophagy. Since then, this topic has received increasing attention, and many scientists have entered the field. Our knowledge base and relevant new technologies have also been expanding. Thus, it is important to formulate on a regular basis updated guidelines for monitoring autophagy in different organisms. Despite numerous reviews, there continues to be confusion regarding acceptable methods to evaluate autophagy, especially in multicellular eukaryotes. Here, we present a set of guidelines for investigators to select and interpret methods to examine autophagy and related processes, and for reviewers to provide realistic and reasonable critiques of reports that are focused on these processes. These guidelines are not meant to be a dogmatic set of rules, because the appropriateness of any assay largely depends on the question being asked and the system being used. Moreover, no individual assay is perfect for every situation, calling for the use of multiple techniques to properly monitor autophagy in each experimental setting. Finally, several core components of the autophagy machinery have been implicated in distinct autophagic processes (canonical and noncanonical autophagy), implying that genetic approaches to block autophagy should rely on targeting two or more autophagy-related genes that ideally participate in distinct steps of the pathway. Along similar lines, because multiple proteins involved in autophagy also regulate other cellular pathways including apoptosis, not all of them can be used as a specific marker for bona fide autophagic responses. Here, we critically discuss current methods of assessing autophagy and the information they can, or cannot, provide. Our ultimate goal is to encourage intellectual and technical innovation in the field
    corecore