48 research outputs found

    The level set method for the two-sided eigenproblem

    Full text link
    We consider the max-plus analogue of the eigenproblem for matrix pencils Ax=lambda Bx. We show that the spectrum of (A,B) (i.e., the set of possible values of lambda), which is a finite union of intervals, can be computed in pseudo-polynomial number of operations, by a (pseudo-polynomial) number of calls to an oracle that computes the value of a mean payoff game. The proof relies on the introduction of a spectral function, which we interpret in terms of the least Chebyshev distance between Ax and lambda Bx. The spectrum is obtained as the zero level set of this function.Comment: 34 pages, 4 figures. Changes with respect to the previous version: we explain relation to mean-payoff games and discrete event systems, and show that the reconstruction of spectrum is pseudopolynomia

    Feasibility study of computed tomography colonography using limited bowel preparation at normal and low-dose levels study

    Get PDF
    The purpose was to evaluate low-dose CT colonography without cathartic cleansing in terms of image quality, polyp visualization and patient acceptance. Sixty-one patients scheduled for colonoscopy started a low-fiber diet, lactulose and amidotrizoic-acid for fecal tagging 2 days prior to the CT scan (standard dose, 5.8–8.2 mSv). The original raw data of 51 patients were modified and reconstructed at simulated 2.3 and 0.7 mSv levels. Two observers evaluated the standard dose scan regarding image quality and polyps. A third evaluated the presence of polyps at all three mSv levels in a blinded prospective way. All observers were blinded to the reference standard: colonoscopy. At three times patients were given questionnaires relating to their experiences and preference. Image quality was sufficient in all patients, but significantly lower in the cecum, sigmoid and rectum. The two observers correctly identified respectively 10/15 (67%) and 9/15 (60%) polyps ≥10 mm, with 5 and 8 false-positive lesions (standard dose scan). Dose reduction down to 0.7 mSv was not associated with significant changes in diagnostic value (polyps ≥10 mm). Eighty percent of patients preferred CT colonography and 13% preferred colonoscopy (P<0.001). CT colonography without cleansing is preferred to colonoscopy and shows sufficient image quality and moderate sensitivity, without impaired diagnostic value at dose-levels as low as 0.7 mSv

    Using RNA-seq to determine the transcriptional landscape and the hypoxic response of the pathogenic yeast Candida parapsilosis

    Get PDF
    <p>Abstract</p> <p>Background</p> <p><it>Candida parapsilosis </it>is one of the most common causes of <it>Candida </it>infection worldwide. However, the genome sequence annotation was made without experimental validation and little is known about the transcriptional landscape. The transcriptional response of <it>C. parapsilosis </it>to hypoxic (low oxygen) conditions, such as those encountered in the host, is also relatively unexplored.</p> <p>Results</p> <p>We used next generation sequencing (RNA-seq) to determine the transcriptional profile of <it>C. parapsilosis </it>growing in several conditions including different media, temperatures and oxygen concentrations. We identified 395 novel protein-coding sequences that had not previously been annotated. We removed > 300 unsupported gene models, and corrected approximately 900. We mapped the 5' and 3' UTR for thousands of genes. We also identified 422 introns, including two introns in the 3' UTR of one gene. This is the first report of 3' UTR introns in the Saccharomycotina. Comparing the introns in coding sequences with other species shows that small numbers have been gained and lost throughout evolution. Our analysis also identified a number of novel transcriptional active regions (nTARs). We used both RNA-seq and microarray analysis to determine the transcriptional profile of cells grown in normoxic and hypoxic conditions in rich media, and we showed that there was a high correlation between the approaches. We also generated a knockout of the <it>UPC2 </it>transcriptional regulator, and we found that similar to <it>C. albicans</it>, Upc2 is required for conferring resistance to azole drugs, and for regulation of expression of the ergosterol pathway in hypoxia.</p> <p>Conclusion</p> <p>We provide the first detailed annotation of the <it>C. parapsilosis </it>genome, based on gene predictions and transcriptional analysis. We identified a number of novel ORFs and other transcribed regions, and detected transcripts from approximately 90% of the annotated protein coding genes. We found that the transcription factor Upc2 role has a conserved role as a major regulator of the hypoxic response in <it>C. parapsilosis </it>and <it>C. albicans</it>.</p

    DNA Damage during G2 Phase Does Not Affect Cell Cycle Progression of the Green Alga Scenedesmus quadricauda

    Get PDF
    DNA damage is a threat to genomic integrity in all living organisms. Plants and green algae are particularly susceptible to DNA damage especially that caused by UV light, due to their light dependency for photosynthesis. For survival of a plant, and other eukaryotic cells, it is essential for an organism to continuously check the integrity of its genetic material and, when damaged, to repair it immediately. Cells therefore utilize a DNA damage response pathway that is responsible for sensing, reacting to and repairing damaged DNA. We have studied the effect of 5-fluorodeoxyuridine, zeocin, caffeine and combinations of these on the cell cycle of the green alga Scenedesmus quadricauda. The cells delayed S phase and underwent a permanent G2 phase block if DNA metabolism was affected prior to S phase; the G2 phase block imposed by zeocin was partially abolished by caffeine. No cell cycle block was observed if the treatment with zeocin occurred in G2 phase and the cells divided normally. CDKA and CDKB kinases regulate mitosis in S. quadricauda; their kinase activities were inhibited by Wee1. CDKA, CDKB protein levels were stabilized in the presence of zeocin. In contrast, the protein level of Wee1 was unaffected by DNA perturbing treatments. Wee1 therefore does not appear to be involved in the DNA damage response in S. quadricauda. Our results imply a specific reaction to DNA damage in S. quadricauda, with no cell cycle arrest, after experiencing DNA damage during G2 phase

    STD-dependent and independent encoding of input irregularity as spike rate in a computational model of a cerebellar nucleus neuron

    Get PDF
    Copyright The Authors 2011. This article is published with open access at Springerlink.comNeurons in the cerebellar nuclei (CN) receive inhibitory inputs from Purkinje cells in the cerebellar cortex and provide the major output from the cerebellum, but their computational function is not well understood. It has recently been shown that the spike activity of Purkinje cells is more regular than previously assumed and that this regularity can affect motor behaviour. We use a conductance-based model of a CN neuron to study the effect of the regularity of Purkinje cell spiking on CN neuron activity. We find that increasing the irregularity of Purkinje cell activity accelerates the CN neuron spike rate and that the mechanism of this recoding of input irregularity as output spike rate depends on the number of Purkinje cells converging onto a CN neuron. For high convergence ratios, the irregularity induced spike rate acceleration depends on short-term depression (STD) at the Purkinje cell synapses. At low convergence ratios, or for synchronised Purkinje cell input, the firing rate increase is independent of STD. The transformation of input irregularity into output spike rate occurs in response to artificial input spike trains as well as to spike trains recorded from Purkinje cells in tottering mice, which show highly irregular spiking patterns. Our results suggest that STD may contribute to the accelerated CN spike rate in tottering mice and they raise the possibility that the deficits in motor control in these mutants partly result as a pathological consequence of this natural form of plasticity.Peer reviewedFinal Published versio

    Mathematical Model of Bursting in Dissociated Purkinje Neurons

    Get PDF
    In vitro, Purkinje cell behaviour is sometimes studied in a dissociated soma preparation in which the dendritic projection has been cleaved. A fraction of these dissociated somas spontaneously burst. The mechanism of this bursting is incompletely understood. We have constructed a biophysical Purkinje soma model, guided and constrained by experimental reports in the literature, that can replicate the somatically driven bursting pattern and which hypothesises Persistent Na+ current (INaP) to be its burst initiator and SK K+ current (ISK) to be its burst terminator
    corecore