17 research outputs found

    Automatic Colon Segmentation with Dual Scan CT Colonography

    No full text
    We present a fully automated three-dimensional (3-D) segmentation algorithm to extract the colon lumen surface in CT colonography. Focusing on significant-size polyp detection, we target at an efficient algorithm that maximizes overall colon coverage, minimizes the extracolonic components, maintains local shape accuracy, and achieves high segmentation speed. Two-dimensional (2-D) image processing techniques are employed first, resulting in automatic seed placement and better colon coverage. This is followed by near-air threshold 3-D region-growing using an improved marching-cubes algorithm, which provides fast and accurate surface generation. The algorithm constructs a well-organized vertex-triangle structure that uniquely employs a hash table method, yielding an order of magnitude speed improvement. We segment two scans, prone and supine, independently and with the goal of improved colon coverage. Both segmentations would be available for subsequent polyp detection systems. Segmenting and analyzing both scans improves surface coverage by at least 6% over supine or prone alone. According to subjective evaluation, the average coverage is about 87.5% of the entire colon. Employing near-air threshold and elongation criteria, only 6% of the data sets include extracolonic components (EC) in the segmentation. The observed surface shape accuracy of the segmentation is adequate for significant-size (6 mm) polyp detection, which is also verified by the results of the prototype detection algorithm. The segmentation takes less than 5 minutes on an AMD 1-GHz single-processor PC, which includes reading the volume data and writing the surface results. The surface-based segmentation algorithm is practical for subsequent polyp detection algorithms in that it produces high coverage, has a low EC rate, maintains local shape accuracy, and has a computational efficiency that makes real-time polyp detection possible. A fully automatic or computer-aided polyp detection system using this technique is likely to benefit future colon cancer early screening
    corecore