13 research outputs found

    Eosinophils in glioblastoma biology

    Get PDF
    Glioblastoma multiforme (GBM) is the most common primary brain tumor in adults. The development of this malignant glial lesion involves a multi-faceted process that results in a loss of genetic or epigenetic gene control, un-regulated cell growth, and immune tolerance. Of interest, atopic diseases are characterized by a lack of immune tolerance and are inversely associated with glioma risk. One cell type that is an established effector cell in the pathobiology of atopic disease is the eosinophil. In response to various stimuli, the eosinophil is able to produce cytotoxic granules, neuromediators, and pro-inflammatory cytokines as well as pro-fibrotic and angiogenic factors involved in pathogen clearance and tissue remodeling and repair. These various biological properties reveal that the eosinophil is a key immunoregulatory cell capable of influencing the activity of both innate and adaptive immune responses. Of central importance to this report is the observation that eosinophil migration to the brain occurs in response to traumatic brain injury and following certain immunotherapeutic treatments for GBM. Although eosinophils have been identified in various central nervous system pathologies, and are known to operate in wound/repair and tumorstatic models, the potential roles of eosinophils in GBM development and the tumor immunological response are only beginning to be recognized and are therefore the subject of the present review

    Defining traumatic brain injury in children and youth using International Classification of Diseases version 10 codes: a systematic review protocol

    No full text
    BACKGROUND: Although healthcare administrative data are commonly used for traumatic brain injury research, there is currently no consensus or consistency on using the International Classification of Diseases version 10 codes to define traumatic brain injury among children and youth. This protocol is for a systematic review of the literature to explore the range of International Classification of Diseases version 10 codes that are used to define traumatic brain injury in this population. METHODS/DESIGN: The databases MEDLINE, MEDLINE In-Process, Embase, PsychINFO, CINAHL, SPORTDiscus, and Cochrane Database of Systematic Reviews will be systematically searched. Grey literature will be searched using Grey Matters and Google. Reference lists of included articles will also be searched. Articles will be screened using predefined inclusion and exclusion criteria and all full-text articles that meet the predefined inclusion criteria will be included for analysis. The study selection process and reasons for exclusion at the full-text level will be presented using a PRISMA study flow diagram. Information on the data source of included studies, year and location of study, age of study population, range of incidence, and study purpose will be abstracted into a separate table and synthesized for analysis. All International Classification of Diseases version 10 codes will be listed in tables and the codes that are used to define concussion, acquired traumatic brain injury, head injury, or head trauma will be identified. DISCUSSION: The identification of the optimal International Classification of Diseases version 10 codes to define this population in administrative data is crucial, as it has implications for policy, resource allocation, planning of healthcare services, and prevention strategies. It also allows for comparisons across countries and studies. This protocol is for a review that identifies the range and most common diagnoses used to conduct surveillance for traumatic brain injury in children and youth. This is an important first step in reaching an appropriate definition using International Classification of Diseases version 10 codes and can inform future work on reaching consensus on the codes to define traumatic brain injury for this vulnerable population

    Defining pediatric traumatic brain injury using International Classification of Diseases Version 10 Codes: A systematic review

    Get PDF
    Background: Although healthcare administrative data are commonly used for traumatic brain injury (TBI) research, there is currently no consensus or consistency on the International Classification of Diseases Version 10 (ICD-10) codes used to define TBI among children and youth internationally. This study systematically reviewed the literature to explore the range of ICD-10 codes that are used to define TBI in this population. The identification of the range of ICD-10 codes to define this population in administrative data is crucial, as it has implications for policy, resource allocation, planning of healthcare services, and prevention strategies. Methods: The databases MEDLINE, MEDLINE In-Process, Embase, PsychINFO, CINAHL, SPORTDiscus, and Cochrane Database of Systematic Reviews were systematically searched. Grey literature was searched using Grey Matters and Google. Reference lists of included articles were also searched for relevant studies. Two reviewers independently screened all titles and abstracts using pre-defined inclusion and exclusion criteria. A full text screen was conducted on articles that met the first screen inclusion criteria. All full text articles that met the pre-defined inclusion criteria were included for analysis in this systematic review. Results: A total of 1,326 publications were identified through the predetermined search strategy and 32 articles/reports met all eligibility criteria for inclusion in this review. Five articles specifically examined children and youth aged 19 years or under with TBI. ICD-10 case definitions ranged from the broad injuries to the head codes (ICD-10 S00 to S09) to concussion only (S06.0). There was overwhelming consensus on the inclusion of ICD-10 code S06, intracranial injury, while codes S00 (superficial injury of the head), S03 (dislocation, sprain, and strain of joints and ligaments of head), and S05 (injury of eye and orbit) were only used by articles that examined head injury, none of which specifically examined children and youth. Conclusion: This review provides evidence for discussion on how best to use ICD codes for different goals. This is an important first step in reaching an appropriate definition and can inform future work on reaching consensus on the ICD-10 codes to define TBI for this vulnerable population

    Intervention with Multiple Micronutrients Including Dietary and Endogenous Antioxidants for Healthy Aging

    No full text

    Anti-Aging Medicine LiteratureWatch

    No full text

    Development and developmental disorders of the forebrain

    No full text
    corecore