846 research outputs found
Arsenic Cancer Risk Confounder in Southwest Taiwan Data Set
Quantitative analysis for the risk of human cancer from the ingestion of inorganic arsenic has been based on the reported cancer mortality experience in the blackfoot disease (BFD)–endemic area of southwest Taiwan. Linear regression analysis shows that arsenic as the sole etiologic factor accounts for only 21% of the variance in the village standardized mortality ratios for bladder and lung cancer. A previous study had reported the influence of confounders (township, BFD prevalence, and artesian well dependency) qualitatively, but they have not been introduced into a quantitative assessment. In this six-township study, only three townships (2, 4, and 6) showed a significant positive dose–response relationship with arsenic exposure. The other three townships (0, 3, and 5) demonstrated significant bladder and lung cancer risks that were independent of arsenic exposure. The data for bladder and lung cancer mortality for townships 2, 4, and 6 fit an inverse linear regression model (p < 0.001) with an estimated threshold at 151 μg/L (95% confidence interval, 42 to 229 μg/L). Such a model is consistent with epidemiologic and toxicologic literature for bladder cancer. Exploration of the southwest Taiwan cancer mortality data set has clarified the dose–response relationship with arsenic exposure by separating out township as a confounding factor
Health literacy, health status, and healthcare utilization of Taiwanese adults: results from a national survey
Abstract Background Low health literacy is considered a worldwide health threat. The purpose of this study is to assess the prevalence and socio-demographic covariates of low health literacy in Taiwanese adults and to investigate the relationships between health literacy and health status and health care utilization. Methods A national survey of 1493 adults was conducted in 2008. Health literacy was measured using the Mandarin Health Literacy Scale. Health status was measured based on self-rated physical and mental health. Health care utilization was measured based on self-reported outpatient clinic visits, emergency room visits, and hospitalizations. Results Approximately thirty percent of adults were found to have low (inadequate or marginal) health literacy. They tended to be older, have fewer years of schooling, lower household income, and reside in less populated areas. Inadequate health literacy was associated with poorer mental health (OR, 0.57; 95% CI, 0.35-0.91). No association was found between health literacy and health care utilization even after adjusting for other covariates. Conclusions Low (inadequate and marginal) health literacy is prevalent in Taiwan. High prevalence of low health literacy is not necessarily indicative of the need for interventions. Systematic efforts to evaluate the impact of low health literacy on health outcomes in other countries would help to illuminate features of health care delivery and financing systems that may mitigate the adverse health effects of low health literacy.http://deepblue.lib.umich.edu/bitstream/2027.42/78252/1/1471-2458-10-614.xmlhttp://deepblue.lib.umich.edu/bitstream/2027.42/78252/2/1471-2458-10-614.pdfPeer Reviewe
Concomitant Active Tuberculosis Prolongs Survival in Non-Small Cell Lung Cancer: A Study in a Tuberculosis-Endemic Country
BACKGROUND: Adjuvant tumor cell vaccine with chemotherapy against non-small cell lung cancer (NSCLC) shows limited clinical response. Whether it provokes effective cellular immunity in tumor microenvironment is questionable. Concomitant active tuberculosis in NSCLC (TBLC) resembles locoregional immunotherapy of tumor cell vaccine; thus, maximally enriches effective anti-tumor immunity. This study compares the survival and immunological cell profile in TBLC over NSCLC alone. METHODS: Retrospective review of NSCLC patients within 1-year-period of 2007 and follow-up till 2010. RESULTS: A total 276 NSCLC patients were included. The median survival of TBLC is longer than those of NSCLC alone (11.6 vs. 8.8 month, p<0.01). Active tuberculosis is an independent predictor of better survival with HR of 0.68 (95% CI, 0.48 ~ 0.97). Squamous cell carcinoma (SCC) (55.8 vs. 31.7%, p<0.01) is a significant risk factor for NSCLC with active TB. The median survival of SCC with active tuberculosis is significantly longer than adenocarcinoma or undetermined NSCLC with TB (14.2 vs. 6.6 and 2.8 months, p<0.05). Active tuberculosis in SCC increases the expression of CD3 (46.4 ± 24.8 vs. 24.0 ± 16.0, p<0.05), CXCR3 (35.1 ± 16.4 vs. 19.2 ± 13.3, p<0.01) and IP-10 (63.5 ± 21.9 vs. 35.5 ± 21.0, p<0.01), while expression of FOXP3 is decreased (3.5 ± 0.5 vs. 13.3 ± 3.7 p<0.05, p<0.05). Survival of SCC with high expression of CD3 (12.1 vs. 3.6 month, p<0.05) and CXCR3 (12.1 vs. 4.4 month, p<0.05) is longer than that with low expression. CONCLUSIONS: Active tuberculosis in NSCLC shows better survival outcome. The effective T lymphocyte infiltration in tumor possibly underlies the mechanism. Locoregional immunotherapy of tumor cell vaccine may deserve further researches
Dehydrocostuslactone Suppresses Angiogenesis In Vitro and In Vivo through Inhibition of Akt/GSK-3β and mTOR Signaling Pathways
The traditional Chinese medicine component dehydrocostuslactone (DHC) isolated from Saussurea costus (Falc.) Lipschitz, has been shown to have anti-cancer activity. Angiogenesis is an essential process in the growth and progression of cancer. In this study, we demonstrated, for the first time, the anti-angiogenic mechanism of action of DHC to be via the induction of cell cycle progression at the G0/G1 phase due to abrogation of the Akt/glycogen synthase kinase-3β (GSK-3β)/cyclin D1 and mTOR signaling pathway. First, we demonstrated that DHC has an anti-angiogenic effect in the matrigel-plug nude mice model and an inhibitory effect on human umbilical vein endothelial cell (HUVEC) proliferation and capillary-like tube formation in vitro. DHC caused G0/G1 cell cycle arrest, which was associated with the down-regulation of cyclin D1 expression, leading to the suppression of retinoblastoma protein phosphorylation and subsequent inhibition of cyclin A and cdk2 expression. With respect to the molecular mechanisms underlying the DHC-induced cyclin D1 down-regulation, this study demonstrated that DHC significantly inhibits Akt expression, resulting in the suppression of GSK-3β phosphorylation and mTOR expression. These effects are capable of regulating cyclin D1 degradation, but they were significantly reversed by constitutively active myristoylated (myr)-Akt. Furthermore, the abrogation of tube formation induced by DHC was also reversed by overexpression of Akt. And the co-treatment with LiCl and DHC significantly reversed the growth inhibition induced by DHC. Taken together, our study has identified Akt/GSK-3β and mTOR as important targets of DHC and has thus highlighted its potential application in angiogenesis-related diseases, such as cancer
Severity of acute hepatitis and its outcome in patients with dengue fever in a tertiary care hospital Karachi, Pakistan (South Asia)
<p>Abstract</p> <p>Background</p> <p>Liver injury due to dengue viral infection is not uncommon. Acute liver injury is a severe complicating factor in dengue, predisposing to life-threatening hemorrhage, Disseminated Intravascular Coagulation (DIC) and encephalopathy. Therefore we sought to determine the frequency of hepatitis in dengue infection and to compare the outcome (length of stay, in hospital mortality, complications) between patients of Dengue who have mild/moderate (ALT 23-300 IU/L) v/s severe acute hepatitis (ALT > 300 IU/L).</p> <p>Methods</p> <p>A Cohort study of inpatients with dengue viral infection done at Aga Khan University Hospital Karachi. All patients (≥ 14 yrs age) admitted with diagnosis of Dengue Fever (DF), Dengue Hemorrhagic Fever (DHF) or Dengue Shock Syndrome (DSS) were included. Chi square test was used to compare categorical variables and fischer exact test where applicable. Survival analysis (Cox regression and log rank) for primary outcome was done. Student t test was used to compare continuous variables. A p value of less than or equal to 0.05 was taken as significant.</p> <p>Results</p> <p>Six hundred and ninety nine patients were enrolled, including 87% (605) patients with DF and 13% (94) patients with DHF or DSS. Liver functions tests showed median ALT of 88.50 IU/L; IQR 43.25-188 IU/L, median AST of 174 IU/L; IQR 87-371.5 IU/L and median T.Bil of 0.8 mg/dl; IQR 0.6-1.3 mg/dl. Seventy one percent (496) had mild to moderate hepatitis and 15% (103) had severe hepatitis. Mean length of stay (LOS) in patients with mild/moderate hepatitis was 3.63 days v.s 4.3 days in those with severe hepatitis (P value 0.002). Overall mortality was 33.3% (n = 6) in mild/moderate hepatitis vs 66.7% (n = 12) in severe hepatitis group (p value < 0.001). Cox regression analysis also showed significantly higher mortality in severe hepatitis group (H.R (4.91; 95% CI 1.74-13.87 and P value 0.003) and in DHF/DSS (5.43; CI 1.86-15.84 and P value 0.002). There was a significant difference for the complications like Bleeding (P value < 0.001), Acute Renal failure (ARF) (P value 0.002), Acalculus cholecystitis (P value 0.04) and encephalopathy (P value 0.02) in mild/moderate and Severe hepatitis groups respectively.</p> <p>Conclusion</p> <p>Severe hepatitis (SGPT>300IU) in Dengue is associated with prolonged LOS, mortality, bleeding and RF.</p
Pyroglutamate Abeta pathology in APP/PS1KI mice, sporadic and familial Alzheimer’s disease cases
The presence of AβpE3 (N-terminal truncated Aβ starting with pyroglutamate) in Alzheimer’s disease (AD) has received considerable attention since the discovery that this peptide represents a dominant fraction of Aβ peptides in senile plaques of AD brains. This was later confirmed by other reports investigating AD and Down’s syndrome postmortem brain tissue. Importantly, AβpE3 has a higher aggregation propensity, and stability, and shows an increased toxicity compared to full-length Aβ. We have recently shown that intraneuronal accumulation of AβpE3 peptides induces a severe neuron loss and an associated neurological phenotype in the TBA2 mouse model for AD. Given the increasing interest in AβpE3, we have generated two novel monoclonal antibodies which were characterized as highly specific for AβpE3 peptides and herein used to analyze plaque deposition in APP/PS1KI mice, an AD model with severe neuron loss and learning deficits. This was compared with the plaque pattern present in brain tissue from sporadic and familial AD cases. Abundant plaques positive for AβpE3 were present in patients with sporadic AD and familial AD including those carrying mutations in APP (arctic and Swedish) and PS1. Interestingly, in APP/PS1KI mice we observed a continuous increase in AβpE3 plaque load with increasing age, while the density for Aβ1-x plaques declined with aging. We therefore assume that, in particular, the peptides starting with position 1 of Aβ are N-truncated as disease progresses, and that, AβpE3 positive plaques are resistant to age-dependent degradation likely due to their high stability and propensity to aggregate
Sphingomyelin Functions as a Novel Receptor for Helicobacter pylori VacA
The vacuolating cytotoxin (VacA) of the gastric pathogen Helicobacter pylori binds and enters epithelial cells, ultimately resulting in cellular vacuolation. Several host factors have been reported to be important for VacA function, but none of these have been demonstrated to be essential for toxin binding to the plasma membrane. Thus, the identity of cell surface receptors critical for both toxin binding and function has remained elusive. Here, we identify VacA as the first bacterial virulence factor that exploits the important plasma membrane sphingolipid, sphingomyelin (SM), as a cellular receptor. Depletion of plasma membrane SM with sphingomyelinase inhibited VacA-mediated vacuolation and significantly reduced the sensitivity of HeLa cells, as well as several other cell lines, to VacA. Further analysis revealed that SM is critical for VacA interactions with the plasma membrane. Restoring plasma membrane SM in cells previously depleted of SM was sufficient to rescue both toxin vacuolation activity and plasma membrane binding. VacA association with detergent-resistant membranes was inhibited in cells pretreated with SMase C, indicating the importance of SM for VacA association with lipid raft microdomains. Finally, VacA bound to SM in an in vitro ELISA assay in a manner competitively inhibited by lysenin, a known SM-binding protein. Our results suggest a model where VacA may exploit the capacity of SM to preferentially partition into lipid rafts in order to access the raft-associated cellular machinery previously shown to be required for toxin entry into host cells
Structure and Functional Analysis of the RNA- and Viral Phosphoprotein-Binding Domain of Respiratory Syncytial Virus M2-1 Protein
Respiratory syncytial virus (RSV) protein M2-1 functions as an essential transcriptional cofactor of the viral RNA-dependent RNA polymerase (RdRp) complex by increasing polymerase processivity. M2-1 is a modular RNA binding protein that also interacts with the viral phosphoprotein P, another component of the RdRp complex. These binding properties are related to the core region of M2-1 encompassing residues S58 to K177. Here we report the NMR structure of the RSV M2-158–177 core domain, which is structurally homologous to the C-terminal domain of Ebola virus VP30, a transcription co-factor sharing functional similarity with M2-1. The partial overlap of RNA and P interaction surfaces on M2-158–177, as determined by NMR, rationalizes the previously observed competitive behavior of RNA versus P. Using site-directed mutagenesis, we identified eight residues located on these surfaces that are critical for an efficient transcription activity of the RdRp complex. Single mutations of these residues disrupted specifically either P or RNA binding to M2-1 in vitro. M2-1 recruitment to cytoplasmic inclusion bodies, which are regarded as sites of viral RNA synthesis, was impaired by mutations affecting only binding to P, but not to RNA, suggesting that M2-1 is associated to the holonucleocapsid by interacting with P. These results reveal that RNA and P binding to M2-1 can be uncoupled and that both are critical for the transcriptional antitermination function of M2-1
- …