48 research outputs found

    Gastric stimulation: influence of electrical parameters on gastric emptying in control and diabetic rats

    Get PDF
    BACKGROUND: The aim of this study was to test the effect of different pulse frequencies and amplitudes during gastric stimulation (GS) on gastric emptying in the rat. METHODS: GS was performed in 2 groups of laparotomized rats: healthy control animals, and rats with acute diabetes. The effects of four pulse frequencies (0.5, 1, 10, 20 Hz) and three pulse amplitudes (5, 20, 40 mA) were tested. The volumes emptied from the stomach after the oro-gastric instillation of a nutrient solution were compared to those obtained in animals without GS. Intragastric pH values were assessed under basal conditions and after GS. RESULTS: In both groups, GS increased emptied volumes compared to conditions without stimulation (p < 0.05) for pulse frequencies above 0.5 Hz. Increases in pulse frequencies accelerated gastric emptying (p < 0.01) with a plateau at around 10 Hz. The increase in pulse amplitudes resulted in larger emptied volumes only when the pulse frequency was 1 Hz (p < 0.04) while the opposite effect was observed at 20 Hz (p < 0.04). The most effective combinations to enhance gastric emptying compared to baseline conditions were 10 Hz with 5 or 20 mA. The overall effect of GS on gastric emptying compared to baseline conditions without stimulation, was greater in diabetic than in controls rats (p < 0.05). During stimulation, intragastric pH values were not different from basal conditions during fasting or after a meal in control and diabetic rats. CONCLUSIONS: Although both pulse frequency and amplitude should be considered during GS, frequency appears to be the most critical point. The possibility of increasing gastric emptying by electrical stimulation in diabetic rats suggests potential clinical applications for this method

    Identification of the Regulatory Logic Controlling Salmonella Pathoadaptation by the SsrA-SsrB Two-Component System

    Get PDF
    Sequence data from the past decade has laid bare the significance of horizontal gene transfer in creating genetic diversity in the bacterial world. Regulatory evolution, in which non-coding DNA is mutated to create new regulatory nodes, also contributes to this diversity to allow niche adaptation and the evolution of pathogenesis. To survive in the host environment, Salmonella enterica uses a type III secretion system and effector proteins, which are activated by the SsrA-SsrB two-component system in response to the host environment. To better understand the phenomenon of regulatory evolution in S. enterica, we defined the SsrB regulon and asked how this transcription factor interacts with the cis-regulatory region of target genes. Using ChIP-on-chip, cDNA hybridization, and comparative genomics analyses, we describe the SsrB-dependent regulon of ancestral and horizontally acquired genes. Further, we used a genetic screen and computational analyses integrating experimental data from S. enterica and sequence data from an orthologous regulatory system in the insect endosymbiont, Sodalis glossinidius, to identify the conserved yet flexible palindrome sequence that defines DNA recognition by SsrB. Mutational analysis of a representative promoter validated this palindrome as the minimal architecture needed for regulatory input by SsrB. These data provide a high-resolution map of a regulatory network and the underlying logic enabling pathogen adaptation to a host

    Integrating Ion Mobility Mass Spectrometry with Molecular Modelling to Determine the Architecture of Multiprotein Complexes

    Get PDF
    Current challenges in the field of structural genomics point to the need for new tools and technologies for obtaining structures of macromolecular protein complexes. Here, we present an integrative computational method that uses molecular modelling, ion mobility-mass spectrometry (IM-MS) and incomplete atomic structures, usually from X-ray crystallography, to generate models of the subunit architecture of protein complexes. We begin by analyzing protein complexes using IM-MS, and by taking measurements of both intact complexes and sub-complexes that are generated in solution. We then examine available high resolution structural data and use a suite of computational methods to account for missing residues at the subunit and/or domain level. High-order complexes and sub-complexes are then constructed that conform to distance and connectivity constraints imposed by IM-MS data. We illustrate our method by applying it to multimeric protein complexes within the Escherichia coli replisome: the sliding clamp, (β2), the γ complex (γ3δδ′), the DnaB helicase (DnaB6) and the Single-Stranded Binding Protein (SSB4)

    Inducible cAMP Early Repressor (ICER) and Brain Functions

    Get PDF
    The inducible cAMP early repressor (ICER) is an endogenous repressor of cAMP-responsive element (CRE)-mediated gene transcription and belongs to the CRE-binding protein (CREB)/CRE modulator (CREM)/activating transcription factor 1 (ATF-1) gene family. ICER plays an important role in regulating the neuroendocrine system and the circadian rhythm. Other aspects of ICER function have recently attracted heightened attention. Being a natural inducible CREB antagonist, and more broadly, an inducible repressor of CRE-mediated gene transcription, ICER regulates long-lasting plastic changes that occur in the brain in response to incoming stimulation. This review will bring together data on ICER and its functions in the brain, with a special emphasis on recent findings highlighting the involvement of ICER in the regulation of long-term plasticity underlying learning and memory

    A comprehensive overview of radioguided surgery using gamma detection probe technology

    Get PDF
    The concept of radioguided surgery, which was first developed some 60 years ago, involves the use of a radiation detection probe system for the intraoperative detection of radionuclides. The use of gamma detection probe technology in radioguided surgery has tremendously expanded and has evolved into what is now considered an established discipline within the practice of surgery, revolutionizing the surgical management of many malignancies, including breast cancer, melanoma, and colorectal cancer, as well as the surgical management of parathyroid disease. The impact of radioguided surgery on the surgical management of cancer patients includes providing vital and real-time information to the surgeon regarding the location and extent of disease, as well as regarding the assessment of surgical resection margins. Additionally, it has allowed the surgeon to minimize the surgical invasiveness of many diagnostic and therapeutic procedures, while still maintaining maximum benefit to the cancer patient. In the current review, we have attempted to comprehensively evaluate the history, technical aspects, and clinical applications of radioguided surgery using gamma detection probe technology

    Autophagy: Regulation and role in disease

    Full text link
    corecore