38 research outputs found

    Generation of recombinant influenza A virus without M2 ion-channel protein by introduction of a point mutation at the 5′ end of the viral intron

    Get PDF
    The aim of this study was to inhibit influenza virus M2 protein expression by mutating the splicing signal of the M gene. Mutations were introduced into the GU dinucleotide sequence at the 5′-proximal splicing site of the M gene (corresponding to nt 52-53 of M cRNA). Transfected cells expressing mutated M viral ribonucleoproteins failed to generate M2 mRNA. Interestingly, recombinant viruses with mutations at the dinucleotide sequence were viable, albeit attenuated, in cell culture. These recombinants failed to express M2 mRNA and M2 protein. These observations demonstrated that the GU invariant dinucleotide sequence at the 5′-proximal splicing site of M gene is essential for M2 mRNA synthesis. These results also indicated that the M2 ion-channel protein is critical, but not essential, for virus replication in cell culture. This approach may provide a new way of producing attenuated influenza A virus. © 2005 SGM.postprin

    RhoE/ROCK signaling modulates chemoresistance in HCC through IL6/JAK2/STAT3 pathways

    Get PDF
    Conference Theme: New Horizons in Cancer Research Conference: Harnessing Breakthroughs - Targeting CuresPoster Session B: Tumor Biology: no. B40Liver cancer (hepatocellular carcinoma, HCC) is a major malignancy worldwide and the second commonest fatal cancer in Southeast Asia and China including Hong Kong, due to the high prevalence of hepatitis B viral infection. HCC is highly chemoresistant, limiting treatment options to patients. There is an urgent need to delineate the underlying molecular mechanism of HCC chemoresistance so as to identify novel therapeutic targets for this aggressive cancer. Deregulation of Rho GTPase pathway is demonstrated to play important roles in HCC tumorigenesis. RhoE/Rnd3 belongs to the Rnd subfamily of the Rho GTPase which lacks the intrinsic GTPase activity. In our previous study, we have shown that RhoE is frequently downregulated in human HCCs and acts as a metastasis suppressor, whereas ROCK2 is upregulated in human HCCs. In this study, we aimed to investigate whether RhoE is also involved in the regulation of chemoresistance in HCC. Using short-hairpin RNA and ...published_or_final_versio

    Regulatory role of miR-142-3p on the functional hepatic cancer stem cell marker CD133

    Get PDF
    Tumor relapse after therapy typifies hepatocellular carcinoma (HCC) and is believed to be attributable to residual cancer stem cells (CSCs) that survive treatment. We have previously identified a CSC population derived from HCC that is characterized by CD133. Despite our growing knowledge of the importance of this subset of cells in driving HCC, the regulatory mechanism of CD133 is not known. Epigenetic changes are believed to be essential in the control of cancer and stem cells. Here, we report the epigenetic regulation of CD133 by miR-142-3p. The interaction between CD133 and miR-142-3p was identified by in silico prediction and substantiated by luciferase reporter analysis. Expression of CD133 was found to be inversely correlated with miR-142-3p in HCC clinical samples as well as in cell lines. Importantly, lower miR-142-3p expression in HCC was significantly associated with worst survival. Functional studies with miR-142-3p stably transduced in HCC cells demonstrated a diminished ability to self-renew, initiate tumor growth, invade, migrate, induce angiogenesis and resist chemotherapy. Rescue experiments whereby CD133 and miR-142-3p is simultaneously overexpressed compensated the deregulated ability of the cells to confer these features. Thus, miR-142-3p directly targets CD133 to regulate its ability to confer cancer and stem cell-like features in HCC.published_or_final_versio

    Abnormal spatiotemporal processing of emotional facial expressions in childhood autism: Dipole source analysis of event-related potentials

    No full text
    Previous studies of face processing in autism suggest abnormalities in anatomical development, functioning and connectivity/coordination of distributed brain systems involved in social cognition, but the spatial sequence and time course of rapid (sub-second) neural responses to emotional facial expressions have not been examined in detail. Source analysis of high-density event-related potentials (ERPs) is an optimal means to examine both the precise temporal profile and spatial location of early electrical brain activity in response to emotionally salient stimuli. Therefore, we recorded 128-channel ERPs from high-functioning males with autism (aged 6-10 years), and age-, sex- and IQ-matched typically developing controls during explicit and implicit processing of emotion from pictures showing happy, angry, fearful, sad and neutral facial expressions. Children with autism showed normal patterns of behavioural and ERP (P1, N170 and P2) responses. However, dipole source analysis revealed that ERP responses relating to face detection (visual cortex) and configural processing of faces (fusiform gyrus), as well as mental state decoding (medial prefrontal lobe), were significantly weaker and/or slower in autism compared with controls during both explicit and implicit emotion-processing tasks. Slower- and larger-amplitude ERP source activity in the parietal somatosensory cortices possibly reflected more effortful compensatory analytical strategies used by the autism group to process facial gender and emotion. Such aberrant neurophysiological processing of facial emotion observed in children with autism within the first 300 ms of stimulus presentation suggests abnormal cortical specialization within social brain networks, which would likely disrupt the development of normal social-cognitive skills. © The Authors (2008).link_to_subscribed_fulltex

    Preliminary analysis of event-related potentials to emotional facial expressions

    No full text

    Processing of facial emotions: Pilot EEG and fMRI data

    No full text
    We present preliminary results of healthy volunteers who underwent EEG and fMRI experiments in which they performed an implicit (gender discrimination) task and an explicit (emotional or neutral expression) task. The same stimuli from a standardized set of pictures (JACEE 1988) were used in a block design paradigm in both sessions. Combined analysis of the electrophysiological and haemodynamic data was done to integrate the early temporal EEG components with the fMRI spatial activations. This work demonstrates a multimodal approach to understanding the temporal and spatial neurological bases of social developmental disorders such as autism and childhood depression.link_to_subscribed_fulltex

    Pin1 interacts with a specific serine-proline motif in hepatitis B virus X-protein to enhance hepatocarcinogenesis

    No full text
    Background & Aims: The peptidyl prolyl isomerase Pin1 frequently is overexpressed in hepatocellular carcinoma (HCC). Hepatitis B virus (HBV) is the most common etiologic agent in HCC, and its encoded X-protein (HBx) is oncogenic and possesses a serine-proline motif that may bind Pin1. The role of Pin1 in hepatocarcinogenesis, particularly in HBV-related HCC, was investigated. Methods: Immunohistochemical staining was performed to evaluate the prevalence of Pin1 overexpression in HCCs of different etiologies. Glutathione S-transferase pull-down and co-immunoprecipitation experiments were used to validate the physical interaction between Pin1 and HBx. Reporter assay, cell proliferation assay, and xenotransplantation experiments were used to show the functional consequence and importance of Pin1-HBx interaction in hepatocarcinogenesis. Results: We showed preferential Pin1 overexpression in HBV-related tumors and confirmed the interaction between Pin1 and HBx at the specific serine-proline motif. Pin1 overexpression increased the protein stability of HBx. Furthermore, HBx-mediated transactivation was enhanced by co-expression of Pin1. HepG2 expressing Pin1 and HBx showed a synergistic increase in cellular proliferation, as compared with cells expressing Pin1 or HBx alone. Furthermore, concomitant expression of Pin1 and HBx in the nontumorigenic human hepatocyte cell line MIHA led to a synergistic increase in tumor growth. Finally, in Hep3B cells with suppressed Pin1 expression, HBx-enhanced tumor growth in nude mice was abrogated. Conclusions: Pin1 binds HBx to enhance hepatocarcinogenesis in HBV-infected hepatocytes. The discovery of an interaction between Pin1 and HBx will further our understanding of the molecular pathogenic mechanism of HBV-related HCC in human beings. © 2007 AGA Institute.link_to_subscribed_fulltex

    Cripto-1 contributes to stemness in hepatocellular carcinoma by stabilizing Dishevelled-3 and activating Wnt/β-catenin pathway

    No full text
    2017-2018 > Academic research: refereed > Publication in refereed journal201812 bcrcVersion of RecordPublishe

    Activation of MAPK signaling pathway is essential for Id-1 induced serum independent prostate cancer cell growth

    No full text
    The helix-loop-helix protein Id-1 has been suggested to play a positive role in cell proliferation and tumorigenesis of many types of human cancers. However, little is known about the molecular mechanism involved in the function of Id-1. In this study, using four stable Id-1 transfectant clones, we investigated the involvement of MAPK signaling pathway in the Id-1 induced serum independent prostate cancer cell growth. Our results demonstrated that both transient and stable ectopic Id-1 expression in prostate cancer LNCaP cells led to activation of the Raf/MEK1/2 signaling pathway. In addition, inhibition of MEK1/2 phosphorylation by one of its inhibitors, PD098059, resulted in the decreased cell cycle S phase fraction and cell growth rate, suggesting that activation of MAPK signaling pathway is essential for Id-1 induced prostate cancer cell proliferation. Furthermore, treatment with antisense oligonucleotide complementary to Id-1 mRNA in PC-3 and DU145 cells resulted in a decreased Id-1 expression which was accompanied by decreased Egr-1 protein. Our results suggest for the first time that the function of Id-1 is associated with MAPK signaling pathway activation and indicate a possible novel mechanism in which Id-1 regulates prostate cancer cell growth and tumorigenesis.link_to_OA_fulltex
    corecore