6 research outputs found
The dynamics of the tundra-taiga boundary: An overview and suggested coordinated and integrated approach to research
The tundra-taiga boundary stretches for more than 13 400 km around the Northern Hemisphere and is probably the Earth's greatest vegetation transition. The trees that define the boundary have been sensitive to climate changes in the past and models of future vegetation distribution suggest a rapid and dramatic invasion of the tundra by the taiga. Such changes would generate both positive and negative feedbacks to the climate system and the balance could result in a net warming effect. However, the, boundary is becoming increasingly affected by human activities that remove trees and degrade forest-tundra into tundra-like areas. Because of the vastness and remoteness of the tundra-taiga boundary, and of methodological problems such as problematic definitions and lack of standardized methods to record the location and characteristics of the ecotone, a project group has been established under the auspices of the International Arctic Science Committee (IASC). This paper summarizes the initial output of the group and focuses on our uncertainties in understanding the current processes at the tundra-taiga boundary and the conflicts between model predictions of changes in the location of the boundary and contrasting recently observed changes due to human activities. Finally, we present recommendations for a coordinated international approach to the problem and invite the international community to join us in reducing the uncertainties about the dynamics of the ecotone and their consequences.</p
The dynamics of the tundra-taiga boundary: An overview and suggested coordinated and integrated approach to research
The tundra-taiga boundary stretches for more than 13 400 km around the Northern Hemisphere and is probably the Earth's greatest vegetation transition. The trees that define the boundary have been sensitive to climate changes in the past and models of future vegetation distribution suggest a rapid and dramatic invasion of the tundra by the taiga. Such changes would generate both positive and negative feedbacks to the climate system and the balance could result in a net warming effect. However, the, boundary is becoming increasingly affected by human activities that remove trees and degrade forest-tundra into tundra-like areas. Because of the vastness and remoteness of the tundra-taiga boundary, and of methodological problems such as problematic definitions and lack of standardized methods to record the location and characteristics of the ecotone, a project group has been established under the auspices of the International Arctic Science Committee (IASC). This paper summarizes the initial output of the group and focuses on our uncertainties in understanding the current processes at the tundra-taiga boundary and the conflicts between model predictions of changes in the location of the boundary and contrasting recently observed changes due to human activities. Finally, we present recommendations for a coordinated international approach to the problem and invite the international community to join us in reducing the uncertainties about the dynamics of the ecotone and their consequences.</p