6 research outputs found

    Oleic acid variation and marker-assisted detection of Pervenets mutation in high- and low-oleic sunflower cross

    Get PDF
    High-oleic sunflower oil is in high demand on the market due to its heart-healthy properties and richness in monounsaturated fatty acids that makes it more stable in processing than standard sunflower oil. Consequently, one of sunflower breeder's tasks is to develop stable high-oleic sunflower genotypes that will produce high quality oil. We analyzed variability and inheritance of oleic acid content (OAC) in sunflower, developed at the Institute of Field and Vegetable Crops, by analyzing F-1 and F-2 progeny obtained by crossing a standard linoleic and high-oleic inbred line. F-2 individuals were classified in two groups: low-oleic with OAC of 15.24-31.28% and high-oleic with OAC of 62.49-93.82%. Monogenic dominant inheritance was observed. Additionally, several molecular markers were tested for the use in marker-assisted selection in order to shorten the period of detecting high-oleic genotypes. Marker F4-R1 was proven to be the most efficient in detection of genotypes with Pervenets (high-oleic acid) mutation

    Sunflower and climate change: Possibilities of adaptation through breeding and genomic selection

    No full text
    Due to its ability to grow in different agroecological conditions and its moderate drought tolerance, sunflower may become the oil crop of preference in the future, especially in the light of global environmental changes. In the field conditions, sunflower crop is often simultaneously challenged by different biotic and abiotic stresses, and understanding the shared mechanisms contributing to two or more stresses occurring individually or simultaneously is important to improve crop productivity under foreseeable complex stress situations. Exploitation of the available plant genetic resources in combination with the use of modern molecular tools for genome-wide association studies (GWAS) and application of genomic selection (GS) could lead to considerable improvements in sunflower, especially with regard to different stresses and better adaptation to the climate change. In this chapter we present a review of climate-smart (CS) traits and respective genetic resources and tools for their introduction into the cultivated sunflower, thus making it the oil crop resilient to the extreme climatic conditions and well-known and emerging pests and diseases. © Springer Nature Switzerland AG 2019

    Advances in breeding for high grain Zinc in Rice

    No full text

    Characteristics of randomized controlled trials of yoga: a bibliometric analysis

    No full text

    RSSDI-ESI Clinical Practice Recommendations for the Management of Type 2 Diabetes Mellitus 2020

    No full text
    corecore