42 research outputs found
A rare cause of chronic mesenteric ischemia from fibromuscular dysplasia: a case report
<p>Abstract</p> <p>Introduction</p> <p>Chronic mesenteric ischemia is a condition that is classically associated with significant atherosclerosis of the abdominal arteries, causing postprandial abdominal pain out of proportion to physical examination. The abdominal pain is exacerbated after meals due to the shunting of blood away from the intestines to the stomach, causing relative ischemia. More than 95% of chronic mesenteric ischemia cases are due to atherosclerosis. We report the first known case of chronic mesenteric ischemia from fibromuscular dysplasia. To the best of our knowledge, this is also the first known case in the literature where postprandial abdominal pain was the presenting symptom of fibromuscular dysplasia.</p> <p>Case presentation</p> <p>A 44-year-old Caucasian woman with a history of hypertension and preeclampsia, who had taken oral contraceptive pills for 15 years, presented with an intractable, colicky abdominal pain of two weeks duration. This abdominal pain worsened with oral intake. It was also associated with diarrhea and vomiting. Physical examination revealed stage III hypertension out of proportion to her risk factors and diffuse abdominal pain without peritoneal signs. An abdominal computed tomography scan, completed in the emergency room, revealed nonspecific colitis. Laboratory work revealed leukocytosis with a left shift, an erythrocyte sedimentation rate of 79 and a C-reactive protein level of 100. She was started on intravenous flagyl and intravenous ciprofloxacin. However, all microbial cultures were negative including three cultures for clostridium difficile. Urine analysis revealed nephritic range proteinuria. The laboratory profile was within normal limits for perinuclear-anti-neutrophil cytoplasmic antibody, cytoplasmic-anti-neutrophil cytoplasmic antibody, anti-saccharomyces cerevisiae antibody, antinuclear antibody test, celiac profile, lactate, carbohydrate antigen-125 and thyroid stimulating hormone. A colonoscopy was completed, which revealed diffuse colonic lymphoid reactive hyperplasia. A small bowel series was negative for any inflammation. An indium scan, pan-computed tomography scan and transvaginal ultrasound were also negative. Magnetic resonance angiography of her abdomen revealed proximal superior mesenteric artery stenosis, which was confirmed by computed tomography angiogram findings of severe proximal and distal superior mesenteric artery stenosis, consistent with the appearance of fibromuscular dysplasia on angiography in the absence of vasculitis or atherosclerotic disease. The patient's superior mesenteric artery stenosis was subsequently angioplastied suboptimally and had to be stented with an Angioplus stent. One month after she was admitted, her abdominal pain and tolerance to oral feeds improved tremendously.</p> <p>Conclusion</p> <p>Fibromuscular dysplasia most commonly presents with renal artery stenosis, which rarely causes abdominal pain. This case illustrates how fibromuscular dysplasia can present as a rare cause of chronic mesenteric ischemia, similar to chronic mesenteric ischemia from atherosclerosis.</p
Early administration of IL-6RA does not prevent radiation-induced lung injury in mice
<p>Abstract</p> <p>Background</p> <p>Radiation pneumonia and subsequent radiation lung fibrosis are major dose-limiting complications for patients undergoing thoracic radiotherapy. Interleukin-6 (IL-6) is a pleiotropic cytokine and plays important roles in the regulation of immune response and inflammation. The purpose of this study was to investigate whether anti-IL-6 monoclonal receptor antibody (IL-6RA) could ameliorate radiation-induced lung injury in mice.</p> <p>Methods</p> <p>BALB/cAnNCrj mice having received thoracic irradiation of 21 Gy were injected intraperitoneally with IL-6RA (MR16-1) or control rat IgG twice, immediately and seven days after irradiation. Enzyme-linked immunosorbent assay was used to examine the plasma level of IL-6 and serum amyloid A (SAA). Lung injury was assessed by histological staining with haematoxylin and eosin or Azan, measuring lung weight, and hydroxyproline.</p> <p>Results</p> <p>The mice treated with IL-6RA did not survive significantly longer than the rat IgG control. We observed marked up-regulation of IL-6 in mice treated with IL-6RA 150 days after irradiation, whereas IL-6RA temporarily suppressed early radiation-induced increase in the IL-6 release level. Histopathologic assessment showed no differences in lung section or lung weight between mice treated with IL-6RA and control.</p> <p>Conclusions</p> <p>Our findings suggest that early treatment with IL-6RA after irradiation alone does not protect against radiation-induced lung injury.</p
CD40, autophagy and Toxoplasma gondii
Toxoplasmagondii represents a pathogen that survives within host cells by preventing the endosomal-lysosomal compartments from fusing with the parasitophorous vacuoles. The dogma had been that the non-fusogenic nature of these vacuoles is irreversible. Recent studies revealed that this dogma is not correct. Cell-mediated immunity through CD40 re-routes the parasitophorous vacuoles to the lysosomal compartment by a process called autophagy. Autophagosome formation around the parasitophorous vacuole results in killing of the T. gondii. CD40-induced autophagy likely contributes to resistance against T. gondii particularly in neural tissue
Biologics registers in RA: methodological aspects, current role and future applications
The beginning of the 21st century saw a biopharmaceutical revolution in the treatment of inflammatory rheumatic diseases, particularly rheumatoid arthritis. The fast-evolving use of biologic therapies highlighted the need to develop registers at national and international levels with the aim of collecting long-term data on patient outcomes. Over the past 15 years, many biologics registers have contributed a wealth of data and provided robust and reliable evidence on the use, effectiveness and safety of these therapies. The unavoidable challenges posed by the continuous introduction of new therapies, particularly with regard to understanding their long-term safety, highlights the importance of learning from experience with established biologic therapies. In this Perspectives article, the role of biologics registers in bridging the evidence gap between efficacy in clinical trials and real-world effectiveness is discussed, with a focus on methodological aspects of registers, their unique features and challenges and their role going forward
More Than 1,001 Problems with Protein Domain Databases: Transmembrane Regions, Signal Peptides and the Issue of Sequence Homology
Large-scale genome sequencing gained general importance for life science because functional annotation of otherwise experimentally uncharacterized sequences is made possible by the theory of biomolecular sequence homology. Historically, the paradigm of similarity of protein sequences implying common structure, function and ancestry was generalized based on studies of globular domains. Having the same fold imposes strict conditions over the packing in the hydrophobic core requiring similarity of hydrophobic patterns. The implications of sequence similarity among non-globular protein segments have not been studied to the same extent; nevertheless, homology considerations are silently extended for them. This appears especially detrimental in the case of transmembrane helices (TMs) and signal peptides (SPs) where sequence similarity is necessarily a consequence of physical requirements rather than common ancestry. Thus, matching of SPs/TMs creates the illusion of matching hydrophobic cores. Therefore, inclusion of SPs/TMs into domain models can give rise to wrong annotations. More than 1001 domains among the 10,340 models of Pfam release 23 and 18 domains of SMART version 6 (out of 809) contain SP/TM regions. As expected, fragment-mode HMM searches generate promiscuous hits limited to solely the SP/TM part among clearly unrelated proteins. More worryingly, we show explicit examples that the scores of clearly false-positive hits, even in global-mode searches, can be elevated into the significance range just by matching the hydrophobic runs. In the PIR iProClass database v3.74 using conservative criteria, we find that at least between 2.1% and 13.6% of its annotated Pfam hits appear unjustified for a set of validated domain models. Thus, false-positive domain hits enforced by SP/TM regions can lead to dramatic annotation errors where the hit has nothing in common with the problematic domain model except the SP/TM region itself. We suggest a workflow of flagging problematic hits arising from SP/TM-containing models for critical reconsideration by annotation users
FACT, the Bur Kinase Pathway, and the Histone Co-Repressor HirC Have Overlapping Nucleosome-Related Roles in Yeast Transcription Elongation
Gene transcription is constrained by the nucleosomal nature of chromosomal DNA. This nucleosomal barrier is modulated by FACT, a conserved histone-binding heterodimer. FACT mediates transcription-linked nucleosome disassembly and also nucleosome reassembly in the wake of the RNA polymerase II transcription complex, and in this way maintains the repression of ‘cryptic’ promoters found within some genes. Here we focus on a novel mutant version of the yeast FACT subunit Spt16 that supplies essential Spt16 activities but impairs transcription-linked nucleosome reassembly in dominant fashion. This Spt16 mutant protein also has genetic effects that are recessive, which we used to show that certain Spt16 activities collaborate with histone acetylation and the activities of a Bur-kinase/Spt4–Spt5/Paf1C pathway that facilitate transcription elongation. These collaborating activities were opposed by the actions of Rpd3S, a histone deacetylase that restores a repressive chromatin environment in a transcription-linked manner. Spt16 activity paralleling that of HirC, a co-repressor of histone gene expression, was also found to be opposed by Rpd3S. Our findings suggest that Spt16, the Bur/Spt4–Spt5/Paf1C pathway, and normal histone abundance and/or stoichiometry, in mutually cooperative fashion, facilitate nucleosome disassembly during transcription elongation. The recessive nature of these effects of the mutant Spt16 protein on transcription-linked nucleosome disassembly, contrasted to its dominant negative effect on transcription-linked nucleosome reassembly, indicate that mutant FACT harbouring the mutant Spt16 protein competes poorly with normal FACT at the stage of transcription-linked nucleosome disassembly, but effectively with normal FACT for transcription-linked nucleosome reassembly. This functional difference is consistent with the idea that FACT association with the transcription elongation complex depends on nucleosome disassembly, and that the same FACT molecule that associates with an elongation complex through nucleosome disassembly is retained for reassembly of the same nucleosome