15 research outputs found

    Cigarette smoke and lipopolysaccharide induce a proliferative airway smooth muscle phenotype

    Get PDF
    Background: A major feature of chronic obstructive pulmonary disease (COPD) is airway remodelling, which includes an increased airway smooth muscle (ASM) mass. The mechanisms underlying ASM remodelling in COPD are currently unknown. We hypothesized that cigarette smoke (CS) and/or lipopolysaccharide (LPS), a major constituent of CS, organic dust and gram-negative bacteria, that may be involved in recurrent airway infections and exacerbations in COPD patients, would induce phenotype changes of ASM. Methods: To this aim, using cultured bovine tracheal smooth muscle (BTSM) cells and tissue, we investigated the direct effects of CS extract (CSE) and LPS on ASM proliferation and contractility. Results: Both CSE and LPS induced a profound and concentration-dependent increase in DNA synthesis in BTSM cells. CSE and LPS also induced a significant increase in BTSM cell number, which was associated with increased cyclin D1 expression and dependent on activation of ERK 1/2 and p38 MAP kinase. Consistent with a shift to a more proliferative phenotype, prolonged treatment of BTSM strips with CSE or LPS significantly decreased maximal methacholine- and KCl-induced contraction. Conclusions: Direct exposure of ASM to CSE or LPS causes the induction of a proliferative, hypocontractile ASM phenotype, which may be involved in airway remodelling in COPD

    Sildenafil attenuates pulmonary inflammation and fibrin deposition, mortality and right ventricular hypertrophy in neonatal hyperoxic lung injury

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Phosphodiesterase-5 inhibition with sildenafil has been used to treat severe pulmonary hypertension and bronchopulmonary dysplasia (BPD), a chronic lung disease in very preterm infants who were mechanically ventilated for respiratory distress syndrome.</p> <p>Methods</p> <p>Sildenafil treatment was investigated in 2 models of experimental BPD: a lethal neonatal model, in which rat pups were continuously exposed to hyperoxia and treated daily with sildenafil (50–150 mg/kg body weight/day; injected subcutaneously) and a neonatal lung injury-recovery model in which rat pups were exposed to hyperoxia for 9 days, followed by 9 days of recovery in room air and started sildenafil treatment on day 6 of hyperoxia exposure. Parameters investigated include survival, histopathology, fibrin deposition, alveolar vascular leakage, right ventricular hypertrophy, and differential mRNA expression in lung and heart tissue.</p> <p>Results</p> <p>Prophylactic treatment with an optimal dose of sildenafil (2 × 50 mg/kg/day) significantly increased lung cGMP levels, prolonged median survival, reduced fibrin deposition, total protein content in bronchoalveolar lavage fluid, inflammation and septum thickness. Treatment with sildenafil partially corrected the differential mRNA expression of amphiregulin, plasminogen activator inhibitor-1, fibroblast growth factor receptor-4 and vascular endothelial growth factor receptor-2 in the lung and of brain and c-type natriuretic peptides and the natriuretic peptide receptors NPR-A, -B, and -C in the right ventricle. In the lethal and injury-recovery model we demonstrated improved alveolarization and angiogenesis by attenuating mean linear intercept and arteriolar wall thickness and increasing pulmonary blood vessel density, and right ventricular hypertrophy (RVH).</p> <p>Conclusion</p> <p>Sildenafil treatment, started simultaneously with exposure to hyperoxia after birth, prolongs survival, increases pulmonary cGMP levels, reduces the pulmonary inflammatory response, fibrin deposition and RVH, and stimulates alveolarization. Initiation of sildenafil treatment after hyperoxic lung injury and continued during room air recovery improves alveolarization and restores pulmonary angiogenesis and RVH in experimental BPD.</p

    Inhibitory effects of inhaled complex traditional Chinese medicine on early and late asthmatic responses induced by ovalbumin in sensitized guinea pigs

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Many formulae of traditional Chinese medicines (TCMs) have been used for antiasthma treatment dating back many centuries. There is evidence to suggest that TCMs are effective as a cure for this allergenic disease administered via gastric tubes in animal studies; however, their efficacy, safety and side effects as an asthmatic therapy are still unclear.</p> <p>Methods</p> <p>In this study, guinea pigs sensitized with ovalbumin (OVA) were used as an animal model for asthma challenge, and the sensitization of animals by bronchial reactivity to methacholine (Mch) and the IgE concentration in the serum after OVA challenge were estimated. Complex traditional Chinese herbs (CTCM) were administered to the animals by nebulization, and the leukocytes were evaluated from bronchoalveolar lavage fluid (BALF).</p> <p>Results</p> <p>The results showed that inhalation of CTCM could abolish the increased lung resistance (13-fold increase) induced by challenge with OVA in the early asthmatic response (EAR), reducing to as low as baseline (1-fold). Moreover, our results indicated higher IgE levels (range, 78-83 ng/ml) in the serum of sensitized guinea pigs than in the unsensitized controls (0.9 ± 0.256 ng/ml). In addition, increased total leukocytes and higher levels of eosinophils and neutrophils were seen 6 hours after challenge, and the increased inflammatory cells were reduced by treatment with CTCM inhalation. The interleukin-5 (IL-5) level in BALF was also reduced by CTCM.</p> <p>Conclusion</p> <p>Our findings indicate a novel method of administering traditional Chinese medicines for asthma treatment in an animal model that may be more effective than traditional methods.</p

    Early and late bronchoconstrictions, airway hyper-reactivity, leucocyte influx and lung histamine and nitric oxide after inhaled antigen: effects of dexamethasone and rolipram

    No full text
    Background Guinea-pig models can provide the essential features of asthma, including early- (EAR) and late- (LAR) phase asthmatic responses, airway hyper-reactivity (AHR) and inflammatory cell influx; however, these components are rarely demonstrated all in the same model. Objectives The aim of this study was to establish a conscious guinea-pig model with these essential features of asthma and to correlate these with bronchoalveolar lavage fluid (BALF) histamine and nitric oxide (NO) levels. The model would be validated from the susceptibility of these parameters to standard anti-asthmatic agents, the steroid, dexamethasone, and a phosphodiesterase-4 (PDE4) inhibitor, rolipram. Methods Guinea-pigs were sensitized with ovalbumen (OA) (10 μg plus Al2(OH)3 100 mg, intraperitoneal (i.p.)) and 14 days later received inhaled OA (100 μg/mL) or vehicle for 1 h. Airway function was measured by whole-body plethysmography as specific airway conductance (sGaw). Reactivity to inhaled histamine (nose-only, 1 mm, 20 s) was recorded 24 h before and at 6, 12 or 24 h after OA challenge. BALF was obtained to determine the total and differential cell counts, NO and histamine. Results Guinea-pigs challenged with OA showed an EAR as a fall in (sGaw) (−54.9±10.8%), which resolved by 6 h and was followed by an LAR between 7 and 11 h (−30.2±8.8%). No bronchoconstriction to inhaled histamine occurred before OA challenge but at 6, 12 or 24 h afterwards, sGaw fell significantly, indicating AHR. At 1 h after OA, macrophages, eosinophils and neutrophils significantly increased in BALF. Macrophages and eosinophils increased further up to 24 h (3- and 44-fold), but neutrophils declined to control levels. BALF histamine levels increased at 0.25 h after OA challenge and peaked at 6 h. BALF NO levels initially fell (44%) 1 h after OA exposure and then progressively rose above control levels. Dexamethasone (20 mg/kg, i.p.) and rolipram (1 mg/kg, i.p.) administered 24 and 0.5 h before and 6 h after OA challenge inhibited leucocyte influx, AHR and the early deficiency and later excess of NO. Dexamethasone but not rolipram attenuated the LAR. Conclusions This model displays many of the features of human asthma with predictable responses to dexamethasone and evidence of anti-asthmatic activity by the PDE4 inhibitor, rolipram

    Goblet cell hyperplasia, airway function, and leukocyte infiltration after chronic lipopolysaccharide exposure in conscious guinea pigs: Effects of rolipram and dexamethasone

    No full text
    The effects of chronic exposures (nine, 48 h apart) of conscious guinea pigs to lipopolysaccharide (LPS) (30 μg · ml−1, 1 h) on airway function, airway histology (in particular, goblet cell numbers), and inflammatory cell infiltration of the lungs were examined as a model of chronic inflammatory lung disease, such as chronic obstructive pulmonary disease. The sensitivity of these parameters to treatment with the corticosteroid, dexamethasone, or the phosphodiesterase-4 (PDE4) inhibitor, rolipram, was determined. As the number of LPS exposures increased, there was a progressively persistent bronchoconstriction after each exposure. After nine LPS exposures, there was evidence on histological examination of airway infiltration of, predominantly, neutrophils in perivascular, peribronchial, and alveolar tissues. After chronic LPS exposure, the airway epithelium possessed a marked goblet cell hyperplasia and evidence of inflammatory edema, features contributory to reduced airway caliber. Treatment with dexamethasone (20 mg · kg−1) or rolipram (1 mg · kg−1), administered (i.p.) 24 and 0.5 h before exposure and 24 and 47 h after each subsequent exposure, attenuated the inflammatory cell infiltration into the airway, goblet cell hyperplasia, and inflammatory edema. Dexamethasone exacerbated, whereas rolipram reversed, the chronic LPS-induced bronchoconstrictions. This study demonstrates that chronic LPS causes persistent bronchoconstriction, neutrophilic airway inflammation, goblet cell hyperplasia, and edema. These rolipram-sensitive features suggest the potential of PDE4 inhibitors in chronic inflammatory lung diseases
    corecore