1,893 research outputs found
On the nature of the high-energy rollover in 1H 0419-577
A NuSTAR/Swift observation of the luminous Seyfert 1 galaxy 1H 0419-577 taken during 2015 reveals one of the most extreme high-energy cut-offs observed to date from an AGN – an origin due to thermal Comptonization would imply a remarkably low coronal temperature kT ∼ 15 keV. The low-energy peak of the spectrum in the hard X-ray NuSTAR band, which peaks before the expected onset of a Compton hump, rules out strong reflection as the origin of the hard excess in this AGN. We show the origin of the high-energy rollover is likely due to a combination of both thermal Comptonization and an intrinsically steeper continuum, which is modified by absorption at lower energies. Furthermore, modelling the broad-band XUV continuum shape as a colour-corrected accretion disc, requires the presence of a variable warm absorber to explain all flux and spectral states of the source, consistent with the previous work on this AGN. While absorber variations produce marked spectral variability in this AGN, consideration of all flux states allows us to isolate a colourless component of variability that may arise from changes in the inner accretion flow, typically at around 10 rg
Clinical effectiveness of a rehabilitation program integrating exercise, self-management, and active coping strategies for chronic knee pain: a cluster randomized trial.
OBJECTIVE: Chronic knee pain is a major cause of disability and health care expenditure, but there are concerns about efficacy, cost, and side effects associated with usual primary care. Conservative rehabilitation may offer a safe, effective, affordable alternative. We compared the effectiveness of a rehabilitation program integrating exercise, self-management, and active coping strategies (Enabling Self-management and Coping with Arthritic Knee Pain through Exercise [ESCAPE-knee pain]) with usual primary care in improving functioning in persons with chronic knee pain. METHODS: We conducted a single-blind, pragmatic, cluster randomized controlled trial. Participants age >/=50 years, reporting knee pain for >6 months, were recruited from 54 inner-city primary care practices. Primary care practices were randomized to continued usual primary care (i.e., whatever intervention a participant's primary care physician deemed appropriate), usual primary care plus the rehabilitation program delivered to individual participants, or usual primary care plus the rehabilitation program delivered to groups of 8 participants. The primary outcome was self-reported functioning (Western Ontario and McMaster Universities Osteoarthritis Index physical functioning [WOMAC-func]) 6 months after completing rehabilitation. RESULTS: A total of 418 participants were recruited; 76 (18%) withdrew, only 5 (1%) due to adverse events. Rehabilitated participants had better functioning than participants continuing usual primary care (-3.33 difference in WOMAC-func score; 95% confidence interval [95% CI] -5.88, -0.78; P = 0.01). Improvements were similar whether participants received individual rehabilitation (-3.53; 95% CI -6.52, -0.55) or group rehabilitation (-3.16; 95% CI -6.55, -0.12). CONCLUSION: ESCAPE-knee pain provides a safe, relatively brief intervention for chronic knee pain that is equally effective whether delivered to individuals or groups of participants
The Suzaku view of highly-ionised outflows in AGN: II -- Location, energetics and scalings with Bolometric Luminosity
Ongoing studies with XMM-Newton have shown that powerful accretion disc winds, as revealed through highly-ionised Fe\,K-shell absorption at E>=6.7 keV, are present in a significant fraction of Active Galactic Nuclei (AGN) in the local Universe (Tombesi et al. 2010). In Gofford et al. (2013) we analysed a sample of 51 Suzaku-observed AGN and independently detected Fe K absorption in ~40% of the sample, and we measured the properties of the absorbing gas. In this work we build upon these results to consider the properties of the associated wind. On average, the fast winds (v_out>0.01c) are located ~10^{15-18} cm (typically ~10^{2-4} r_s) from their black hole, their mass outflow rates are of the order ~0.01-1 Msun/yr or ~(0.01-1) M_edd and kinetic power is constrained to ~10^{43-45} erg/s, equivalent to ~(0.1-10%) L_edd. We find a fundamental correlation between the source bolometric luminosity and the wind velocity, with v_out \propto L_bol^{\alpha} and \alpha=0.4^{+0.3}_{-0.2}$ (90% confidence), which indicates that more luminous AGN tend to harbour faster Fe K winds. The mass outflow rate M_out, kinetic power L_k and momentum flux P_out of the winds are also consequently correlated with L_bol, such that more massive and more energetic winds are present in more luminous AGN. We investigate these properties in the framework of a continuum-driven wind, showing that the observed relationships are broadly consistent with a wind being accelerated by continuum-scattering. We find that, globally, a significant fraction (~85%) of the sample can plausibly exceed the L_k/L_bol~0.5% threshold thought necessary for feedback, while 45% may also exceed the less conservative ~5% of L_bol threshold as well. This suggests that the winds may be energetically significant for AGN--host-galaxy feedback processes
Accelerating growth of HFC-227ea (1,1,1,2,3,3,3-heptafluoropropane) in the atmosphere
We report the first measurements of 1,1,1,2,3,3,3-heptafluoropropane (HFC-227ea), a substitute for ozone depleting compounds, in air samples originating from remote regions of the atmosphere and present evidence for its accelerating growth. Observed mixing ratios ranged from below 0.01 ppt in deep firn air to 0.59 ppt in the current northern mid-latitudinal upper troposphere. Firn air samples collected in Greenland were used to reconstruct a history of atmospheric abundance. Year-on-year increases were deduced, with acceleration in the growth rate from 0.029 ppt per year in 2000 to 0.056 ppt per year in 2007. Upper tropospheric air samples provide evidence for a continuing growth until late 2009. Furthermore we calculated a stratospheric lifetime of 370 years from measurements of air samples collected on board high altitude aircraft and balloons. Emission estimates were determined from the reconstructed atmospheric trend and suggest that current "bottom-up" estimates of global emissions for 2005 are too high by a factor of three
Epithelial Barrier Integrity Profiling: Combined Approach Using Cellular Junctional Complex Imaging and Transepithelial Electrical Resistance
A core aspect of epithelial cell function is barrier integrity. A loss of barrier integrity is a feature of a number of respiratory diseases, including asthma, allergic rhinitis, and chronic obstructive pulmonary disease. Restoration of barrier integrity is a target for respiratory disease drug discovery. Traditional methods for assessing barrier integrity have their limitations. Transepithelial electrical resistance (TEER) and dextran permeability methods can give poor in vitro assay robustness. Traditional junctional complex imaging approaches are labor-intensive and tend to be qualitative but not quantitative. To provide a robust and quantitative assessment of barrier integrity, high-content imaging of junctional complexes was combined with TEER. A scalable immunofluorescent high-content imaging technique, with automated quantification of junctional complex proteins zonula occludens-1 and occludin, was established in 3D pseudostratified primary human bronchial epithelial cells cultured at an air–liquid interface. Ionic permeability was measured using TEER on the same culture wells.
The improvements to current technologies include the design of a novel 24-well holder to enable scalable in situ confocal cell imaging without Transwell membrane excision, the development of image analysis pipelines to quantify in-focus junctional complex structures in each plane of a Z stack, and the enhancement of the TEER data analysis process to enable statistical evaluation of treatment effects on barrier integrity. This novel approach was validated by demonstrating measurable changes in barrier integrity in cells grown under conditions known to perturb epithelial cell function
A rapid occultation event in NGC 3227
NGC 3227 exhibits rapid flux and spectral variability in the X-ray band. To understand this behaviour, we conducted a coordinated observing campaign using 320 ks of XMM–Newton exposures together with 160 ks of overlapping NuSTAR observations, spanning a month. Here, we present a rapid variability event that occurs toward the end of the campaign. The spectral hardening event is accompanied by a change in the depth of an unresolved transition array (UTA), whose time-dependent behaviour is resolved using the RGS data. This UTA fingerprint allows us to identify this as a transit event, where a clump of gas having NH∼5×1022atomscm−2, log ξ ∼ 2 occults ∼60 per cent of the continuum photons over the course of approximately a day. This occulting gas is likely associated with clouds in the inner broad-line region. An additional zone of gas with lower column and higher ionization, matches the outflow velocity of the variable zone, and may represent transmission through the cloud limb
X-ray Absorption and Reflection in Active Galactic Nuclei
X-ray spectroscopy offers an opportunity to study the complex mixture of
emitting and absorbing components in the circumnuclear regions of active
galactic nuclei, and to learn about the accretion process that fuels AGN and
the feedback of material to their host galaxies. We describe the spectral
signatures that may be studied and review the X-ray spectra and spectral
variability of active galaxies, concentrating on progress from recent Chandra,
XMM-Newton and Suzaku data for local type 1 AGN. We describe the evidence for
absorption covering a wide range of column densities, ionization and dynamics,
and discuss the growing evidence for partial-covering absorption from data at
energies > 10 keV. Such absorption can also explain the observed X-ray spectral
curvature and variability in AGN at lower energies and is likely an important
factor in shaping the observed properties of this class of source.
Consideration of self-consistent models for local AGN indicates that X-ray
spectra likely comprise a combination of absorption and reflection effects from
material originating within a few light days of the black hole as well as on
larger scales. It is likely that AGN X-ray spectra may be strongly affected by
the presence of disk-wind outflows that are expected in systems with high
accretion rates, and we describe models that attempt to predict the effects of
radiative transfer through such winds, and discuss the prospects for new data
to test and address these ideas.Comment: Accepted for publication in the Astronomy and Astrophysics Review. 58
pages, 9 figures. V2 has fixed an error in footnote
Galaxy evolution: black hole feedback in the luminous quasar PDS 456
The evolution of galaxies is connected to the growth of supermassive black holes in their centers. During the quasar phase, a huge luminosity is released as matter falls onto the black hole, and radiation-driven winds can transfer most of this energy back to the host galaxy. Over five different epochs, we detected the signatures of a nearly spherical stream of highly ionized gas in the broadband x-ray spectra of the luminous quasar PDS 456. This persistent wind is expelled at relativistic speeds from the inner accretion disk, and its wide aperture suggests an effective coupling with the ambient gas. The outflow's kinetic power larger than 10(46) ergs per second is enough to provide the feedback required by models of black hole and host galaxy coevolution
Mindergie: A pervasive learning game for pro-environmental behaviour at the workplace
This chapter reports about a pervasive learning game to increase the environmental awareness and pro-environmental behaviour at the workplace. Based on a discussion of the theoretical background and related work we introduce the game design and game elements. Results of a formative evaluation study are presented and discussed. Results show that incentive mechanisms are less important than challenging game components that involve employees in proposing solutions for energy conservation at the workplace. Conclusions are drawn for future games and energy conservation activities at the workplace.This project has been partially funded by a SURFnet innovation grant for sustainable ICT solutions and partially by the Welten Institute – Research Centre for Learning, Teaching and Technology of the Open University of the Netherlands
- …