9 research outputs found

    β-1,3-Glucan-Induced Host Phospholipase D Activation Is Involved in Aspergillus fumigatus Internalization into Type II Human Pneumocyte A549 Cells

    Get PDF
    The internalization of Aspergillus fumigatus into lung epithelial cells is a process that depends on host cell actin dynamics. The host membrane phosphatidylcholine cleavage driven by phospholipase D (PLD) is closely related to cellular actin dynamics. However, little is known about the impact of PLD on A. fumigatus internalization into lung epithelial cells. Here, we report that once germinated, A. fumigatus conidia were able to stimulate host PLD activity and internalize more efficiently in A549 cells without altering PLD expression. The internalization of A. fumigatus in A549 cells was suppressed by the downregulation of host cell PLD using chemical inhibitors or siRNA interference. The heat-killed swollen conidia, but not the resting conidia, were able to activate host PLD. Further, β-1,3-glucan, the core component of the conidial cell wall, stimulated host PLD activity. This PLD activation and conidia internalization were inhibited by anti-dectin-1 antibody. Indeed, dectin-1, a β-1,3-glucan receptor, was expressed in A549 cells, and its expression profile was not altered by conidial stimulation. Finally, host cell PLD1 and PLD2 accompanied A. fumigatus conidia during internalization. Our data indicate that host cell PLD activity induced by β-1,3-glucan on the surface of germinated conidia is important for the efficient internalization of A. fumigatus into A549 lung epithelial cells

    Dectin-1: a role in antifungal defense and consequences of genetic polymorphisms in humans

    Get PDF
    The clinical relevance of fungal infections has increased dramatically in recent decades as a consequence of the rise of immunocompromised populations, and efforts to understand the underlying mechanisms of protective immunity have attracted renewed interest. Here we review Dectin-1, a pattern recognition receptor involved in antifungal immunity, and discuss recent discoveries of polymorphisms in the gene encoding this receptor which result in human disease

    Mast cells kill Candida albicans in the extracellular environment but spare ingested fungi from death.

    No full text
    Mast cells (MCs) reside in tissues that are common targets of Candida spp. infections, and can exert bactericidal activity, but little is known about their fungicidal activity. MCs purified from rat peritoneum (RPMC) and a clinical isolate of C. albicans, were employed. Ingestion was evaluated by flow cytometry (FACS) and optical microscopy. The killing activity was assayed by FACS analysis and by colony forming unit method. RPMC degranulation was evaluated by \u3b2-hexosaminidase assay and phosphatidylserine externalization by FACS. Phagocytosing RPMC were also analyzed by transmission electron microscopy. Herein, we show that the killing of C. albicans by RPMC takes place in the extracellular environment, very likely through secreted granular components. Ultrastructural analysis of the ingestion process revealed an unusual RPMC-C. albicans interaction that could allow fungal survival. Our findings indicate that MCs have a positive role in the defense mechanism against Candida infections and should be included among the cell types involved in host-defense against this pathogen

    Mast Cell and Basophils: Interaction with IgE and Responses to Toll like Receptor Activators

    No full text

    Malassezia

    No full text
    corecore