8 research outputs found

    White matter changes in cervical dystonia relate to clinical effectiveness of botulinum toxin treatment

    No full text
    In a previous report showing white matter microstructural hemispheric asymmetries medial to the pallidum in focal dystonias, we showed preliminary evidence that this abnormality was reduced 4 weeks after botulinum toxin (BTX) injections. In the current study we report the completed treatment study in a full-size cohort of CD patients (n = 14). In addition to showing a shift toward normalization of the hemispheric asymmetry, we evaluated clinical relevance of these findings by relating white matter changes to degree of symptom improvement. We also evaluated whether the magnitude of the white matter asymmetry before treatment was related to severity, laterality, duration of dystonia, and/or number of previous BTX injections. Our results confirm the findings of our preliminary report: we observed significant fractional anisotropy (FA) changes medial to the pallidum 4 weeks after BTX in CD participants that were not observed in controls scanned at the same interval. There was a significant relationship between magnitude of hemispheric asymmetry and dystonia symptom improvement, as measured by percent reduction in dystonia scale scores. There was also a trend toward a relationship between magnitude of pre-injection white matter asymmetry and symptom severity, but not symptom laterality, disorder duration, or number of previous BTX injections. Post-hoc analyses suggested the FA changes at least partially reflected changes in pathophysiology, but a dissociation between patient perception of benefit from injections and FA changes suggested the changes did not reflect changes to the primary “driver” of the dystonia. In contrast, there were no changes or group differences in DTI diffusivity measures, suggesting the hemispheric asymmetry in CD does not reflect irreversible white matter tissue loss. These findings support the hypothesis that central nervous system white matter changes are involved in the mechanism by which BTX exerts clinical benefit

    A registration method for improving quantitative assessment in probabilistic diffusion tractography

    No full text
    Diffusion MRI-based probabilistic tractography is a powerful tool for non-invasively investigating normal brain architecture and alterations in structural connectivity associated with disease states. Both voxelwise and region-of-interest methods of analysis are capable of integrating population differences in tract amplitude (streamline count or density), given proper alignment of the tracts of interest. However, quantification of tract differences (between groups, or longitudinally within individuals) has been hampered by two related features of white matter. First, it is unknown to what extent healthy individuals differ in the precise location of white matter tracts, and to what extent experimental factors influence perceived tract location. Second, white matter lacks the gross neuroanatomical features (e.g., gyri, histological subtyping) that make parcellation of grey matter plausible – determining where tracts “should” lie within larger white matter structures is difficult. Accurately quantifying tractographic connectivity between individuals is thus inherently linked to the difficulty of identifying and aligning precise tract location. Tractography is often utilized to study neurological diseases in which the precise structural and connectivity abnormalities are unknown, underscoring the importance of accounting for individual differences in tract location when evaluating the strength of structural connectivity. We set out to quantify spatial variance in tracts aligned through a standard, whole-brain registration method, and to assess the impact of location mismatch on groupwise assessments of tract amplitude. We then developed a method for tract alignment that enhances the existing standard whole brain registration, and then tested whether this method improved the reliability of groupwise contrasts. Specifically, we conducted seed-based probabilistic diffusion tractography from primary motor, supplementary motor, and visual cortices, projecting through the corpus callosum. Streamline counts decreased rapidly with movement from the tract center (−35% per millimeter); tract misalignment of a few millimeters caused substantial compromise of amplitude comparisons. Alignment of tracts “peak-to-peak” is essential for accurate amplitude comparisons. However, for all transcallosal tracts registered through the whole-brain method, the mean separation distance between an individual subject's tract and the average tract (3.2 mm) precluded accurate comparison: at this separation, tract amplitudes were reduced by 74% from peak value. In contrast, alignment of subcortical tracts (thalamo-putaminal, pallido-rubral) was substantially better than alignment for cortical tracts; whole-brain registration was sufficient for these subcortical tracts. We demonstrated that location mismatches in cortical tractography were sufficient to produce false positive and false negative amplitude estimates in both groupwise and longitudinal comparisons. We then showed that our new tract alignment method substantially reduced location mismatch and improved both reliability and statistical power of subsequent quantitative comparisons.</p

    White matter changes in cervical dystonia relate to clinical effectiveness of botulinum toxin treatment

    No full text
    In a previous report showing white matter microstructural hemispheric asymmetries medial to the pallidum in focal dystonias, we showed preliminary evidence that this abnormality was reduced 4 weeks after botulinum toxin (BTX) injections. In the current study we report the completed treatment study in a full-size cohort of CD patients (n = 14). In addition to showing a shift toward normalization of the hemispheric asymmetry, we evaluated clinical relevance of these findings by relating white matter changes to degree of symptom improvement. We also evaluated whether the magnitude of the white matter asymmetry before treatment was related to severity, laterality, duration of dystonia, and/or number of previous BTX injections. Our results confirm the findings of our preliminary report: we observed significant fractional anisotropy (FA) changes medial to the pallidum 4 weeks after BTX in CD participants that were not observed in controls scanned at the same interval. There was a significant relationship between magnitude of hemispheric asymmetry and dystonia symptom improvement, as measured by percent reduction in dystonia scale scores. There was also a trend toward a relationship between magnitude of pre-injection white matter asymmetry and symptom severity, but not symptom laterality, disorder duration, or number of previous BTX injections. Post-hoc analyses suggested the FA changes at least partially reflected changes in pathophysiology, but a dissociation between patient perception of benefit from injections and FA changes suggested the changes did not reflect changes to the primary “driver” of the dystonia. In contrast, there were no changes or group differences in DTI diffusivity measures, suggesting the hemispheric asymmetry in CD does not reflect irreversible white matter tissue loss. These findings support the hypothesis that central nervous system white matter changes are involved in the mechanism by which BTX exerts clinical benefit
    corecore