6 research outputs found

    Icytomine: A User-Friendly Tool for Integrating Workflows on Whole Slide Images

    No full text
    International audienceWe present Icytomine, a user-friendly software platform for processing large images from slide scanners. Icytomine integrates in one unique framework the tools and algorithms that were developed independently on Icy and Cytomine platforms to visualise and process digital pathology images. We illustrate the power of this new platform through the design of a dedicated program that uses convolutional neural network to detect and classify glomeruli in kidney biopsies coming from a multicentric clinical study. We show that by streamlining the analytical capabilities of Icy with the AI tools found in Cytomine, we achieved highly promising results

    Rescuing of deficient killing and phagocytic activities of macrophages derived from non-obese diabetic mice by treatment with geldanamycin or heat shock: potential clinical implications

    No full text
    Diabetes mellitus type 1 (DMT1) is an autoimmune disease characterized by the destruction of insulin-producing cells in the pancreas. Diabetic patients are more susceptible to recurrent and uncontrolled infections, with worse prognoses than in healthy individuals. Macrophages (Mϕs) derived from DMT1 individuals have compromised mounting of inflammatory and immune responses. The mechanisms responsible for these alterations remain unknown. It has been shown that the presence of extra- and intracellular heat shock proteins (hsp) positively modulates immune cell function. Using naive Mϕs derived from non-obese diabetic (NOD) mice, a well-established mouse model for DMT1, we demonstrate that heat shock (HS) as well as treatment with geldanamycin (GA), significantly improves diabetic Mϕ activation, resulting in increased phagocytosis and killing of bacteria. Induction of HS did not affect the aberrant NOD-Mϕ cytokine profile, which is characterized by elevated IL-10 levels and normal tumor necrosis factor alpha. Our observations were consistent at pre-diabetic (normal random blood glucose) and diabetic (random blood glucose greater than 250 mg/dl) stages, suggesting that HS and GA treatment may compensate for intrinsic genetic alterations present in diabetic cells regardless of the stage of the disease. The mechanisms associated to this phenomenon are unknown, but they may likely be associated with the induction of hsp expression, a common factor between HS and GA treatment. Our results may open a new field for non-classical function of hsp and indicate that hsp expression may be used as a part of therapeutic approaches for the treatment of complications associated with DMT1 as well as other autoimmune diseases

    Phase-Field Modeling of Individual and Collective Cell Migration

    No full text
    corecore