19 research outputs found

    Lack of methylated hopanoids renders the cyanobacterium Nostoc punctiforme sensitive to osmotic and pH stress

    Full text link
    © 2017 American Society for Microbiology. To investigate the function of 2-methylhopanoids in modern cyanobacteria, the hpnP gene coding for the radical S-adenosyl methionine (SAM) methylase protein that acts on the C-2 position of hopanoids was deleted from the filamentous cyanobacterium Nostoc punctiforme ATCC 29133S. The resulting ΔhpnP mutant lacked all 2-methylhopanoids but was found to produce much higher levels of two bacteriohopanepentol isomers than the wild type. Growth rates of the ΔhpnP mutant cultures were not significantly different from those of the wild type under standard growth conditions. Akinete formation was also not impeded by the absence of 2-methylhopanoids. The relative abundances of the different hopanoid structures in akinete-dominated cultures of the wild-type and ΔhpnP mutant strains were similar to those of vegetative cell-dominated cultures. However, the ΔhpnP mutant was found to have decreased growth rates under both pH and osmotic stress, confirming a role for 2-methylhopanoids in stress tolerance. Evidence of elevated photosystem II yield and NAD(P)H-dependent oxidoreductase activity in the ΔhpnP mutant under stress conditions, compared to the wild type, suggested that the absence of 2-methylhopanoids increases cellular metabolic rates under stress conditions

    The between and within day variation in gross efficiency

    Get PDF
    Before the influence of divergent factors on gross efficiency (GE) [the ratio of mechanical power output (PO) to metabolic power input (PI)] can be assessed, the variation in GE between days, i.e. the test–retest reliability, and the within day variation needs to be known. Physically active males (n = 18) performed a maximal incremental exercise test to obtain VO2max and PO at VO2max (PVO2max), and three experimental testing days, consisting of seven submaximal exercise bouts evenly distributed over the 24 h of the day. Each submaximal exercise bout consisted of six min cycling at 45, 55 and 65% PVO2max, during which VO2 and RER were measured. GE was determined from the final 3 min of each exercise intensity with: GE = (PO/PI) × 100%. PI was calculated by multiplying VO2 with the oxygen equivalent. GE measured during the individually highest exercise intensity with RER <1.0 did not differ significantly between days (F = 2.70, p = 0.08), which resulted in lower and upper boundaries of the 95% limits of agreement of 19.6 and 20.8%, respectively, around a mean GE of 20.2%. Although there were minor within day variations in GE, differences in GE over the day were not significant (F = 0.16, p = 0.99). The measurement of GE during cycling at intensities approximating VT is apparently very robust, a change in GE of ~0.6% can be reliably detected. Lastly, GE does not display a circadian rhythm so long as the criteria of a steady-state VO2 and RER <1.0 are applied

    Diversity of cyanobacterial biomarker genes from the stromatolites of Shark Bay, Western Australia

    Full text link
    Families of closely related chemical compounds, which are relatively resistant to degradation, are often used as biomarkers to help trace the evolutionary history of early groups of organisms and the environments in which they lived. Biomarkers derived from hopanoid variations are particularly useful in determining bacterial community compositions. 2-Methylhopananoids have been thought to be diagnostic for cyanobacteria, and 2-methylhopanes in the geological record are taken as evidence for the presence of cyanobacteria-containing communities at the time of sediment deposition. Recently, however, doubt has been cast on the validity of 2-methylhopanes as cyanobacterial biomarkers, since non-cyanobacterial species have been shown to produce significant amounts of 2-methylhopanoids. This study examines the diversity of hpnP, the hopanoid biosynthesis gene coding for the enzyme that methylates hopanoids at the C2 position. Genomic DNA isolated from stromatolite-associated pustular and smooth microbial mat samples from Shark Bay, Western Australia, was analysed for bacterial diversity, and used to construct an hpnP clone library. A total of 117 partial hpnP clones were sequenced, representing 12 operational taxonomic units (OTUs). Phylogenetic analysis showed that 11 of these OTUs, representing 115 sequences, cluster within the cyanobacterial clade. We conclude that the dominant types of microorganisms with the detected capability of producing 2-methylhopanoids within pustular and smooth microbial mats in Shark Bay are cyanobacteria. © 2012 Society for Applied Microbiology and Blackwell Publishing Ltd

    New multi-scale perspectives on the stromatolites of Shark Bay, Western Australia

    No full text
    A recent field-intensive program in Shark Bay, Western Australia provides new multi-scale perspectives on the world’s most extensive modern stromatolite system. Mapping revealed a unique geographic distribution of morphologically distinct stromatolite structures, many of them previously undocumented. These distinctive structures combined with characteristic shelf physiography define eight ‘Stromatolite Provinces’. Morphological and molecular studies of microbial mat composition resulted in a revised growth model where coccoid cyanobacteria predominate in mat communities forming lithified discrete stromatolite buildups. This contradicts traditional views that stromatolites with the best lamination in Hamelin Pool are formed by filamentous cyanobacterial mats. Finally, analysis of internal fabrics of stromatolites revealed pervasive precipitation of microcrystalline carbonate (i.e. micrite) in microbial mats forming framework and cement that may be analogous to the micritic microstructures typical of Precambrian stromatolites. These discoveries represent fundamental advances in our knowledge of the Shark Bay microbial system, laying a foundation for detailed studies of stromatolite morphogenesis that will advance our understanding of benthic ecosystems on the early Earth

    Modelling Movement Energetics Using Global Positioning System Devices in Contact Team Sports: Limitations and Solutions

    Get PDF
    Quantifying the training and competition loads of players in contact team sports can be performed in a variety of ways, including kinematic, perceptual, heart rate or biochemical monitoring methods. Whilst these approaches provide data relevant for team sports practitioners and athletes, their application to a contact team sport setting can sometimes be challenging or illogical. Furthermore, these methods can generate large fragmented datasets, do not provide a single global measure of training load and cannot adequately quantify all key elements of performance in contact team sports. A previous attempt to address these limitations via the estimation of metabolic energy demand (global energy measurement) has been criticised for its inability to fully quantify the energetic costs of team sports, particularly during collisions. This is despite the seemingly unintentional misapplication of the model’s principles to settings outside of its intended use. There are other hindrances to the application of such models, which are discussed herein, such as the data-handling procedures of Global Position System manufacturers and the unrealistic expectations of end users. Nevertheless, we propose an alternative energetic approach, based on Global Positioning System-derived data, to improve the assessment of mechanical load in contact team sports. We present a framework for the estimation of mechanical work performed during locomotor and contact events with the capacity to globally quantify the work done during training and matches
    corecore