22 research outputs found

    Climate and species affect fine root production with long-term fertilization in acidic tussock tundra near Toolik Lake, Alaska

    Get PDF
    Author Posting. © The Author(s), 2007. This is the author's version of the work. It is posted here by permission of Springer for personal use, not for redistribution. The definitive version was published in Oecologia 153 (2007): 643-652, doi:10.1007/s00442-007-0753-8.Long-term fertilization of acidic tussock tundra has led to changes in plant species composition, increases in aboveground production and biomass and substantial losses of soil organic carbon (SOC). Root litter is an important input to SOC pools, though little is known about fine root demography in tussock tundra. In this study, we examined the response of fine root production and live standing fine root biomass to short- and long-term fertilization, as changes in fine root demography may contribute to observed declines in SOC. Live standing fine root biomass increased with long-term fertilization, while fine root production declined, reflecting replacement of the annual fine root system of Eriophorum vaginatum, with the long-lived fine roots of Betula nana. Fine root production increased in fertilized plots during an unusually warm growing season, but remained unchanged in control plots, consistent with observations that B. nana shows a positive response to climate warming. Calculations based on a few simple assumptions suggest changes in fine root demography with long-term fertilization and species replacement could account for between 20 and 39% of observed declines in SOC stocks.This project was supported by National Science Foundation research grants 9810222, 9911681, 0221606 and 0528748

    Non-adenine based purines accelerate wound healing

    Get PDF
    Wound healing is a complex sequence of cellular and molecular processes that involves multiple cell types and biochemical mediators. Several growth factors have been identified that regulate tissue repair, including the neurotrophin nerve growth factor (NGF). As non-adenine based purines (NABPs) are known to promote cell proliferation and the release of growth factors, we investigated whether NABPs had an effect on wound healing. Full-thickness, excisional wound healing in healthy BALB/c mice was significantly accelerated by daily topical application of NABPs such as guanosine (50% closure by days 2.5′.8). Co-treatment of wounds with guanosine plus anti-NGF reversed the guanosine-promoted acceleration of wound healing, indicating that this effect of guanosine is mediated, at least in part, by NGF. Selective inhibitors of the NGF-inducible serine/threonine protein kinase (protein kinase N), such as 6-methylmercaptopurine riboside abolished the acceleration of wound healing caused by guanosine, confirming that activation of this enzyme is required for this effect of guanosine. Treatment of genetically diabetic BKS.Cg-m+/+lepr db mice, which display impaired wound healing, with guanosine led to accelerated healing of skin wounds (25% closure by days 2.8′.0). These results provide further confirmation that the NABP-mediated acceleration of cutaneous wound healing is mediated via an NGF-dependent mechanism. Thus, NABPs may offer an alternative and viable approach for the treatment of wounds in a clinical setting

    Increased levels of soluble interleukin-6 receptor and CCL3 in COPD sputum.

    No full text
    BACKGROUND: COPD patients have increased numbers of macrophages and neutrophils in the lungs. Interleukin-6 (IL-6) trans-signaling via its soluble receptor sIL-6R, governs the influx of innate immune cells to inflammatory foci through regulation of the chemokine CCL3. We hypothesized that there would be enhanced levels of IL-6, sIL-6R and CCL3 in COPD sputum. METHODS: 59 COPD patients, 15 HNS and 15 S underwent sputum induction and processing with phosphate buffered saline to obtain supernatants for IL-6, sIL-6R and CCL3 analysis. Cytoslides were produced for differential cell counting and immunocytochemistry (COPD; n = 3) to determine cell type surface expression of the CCL3 receptors CCR5 and CCR1. RESULTS: COPD patients expressed higher levels (p < 0.05) of sIL-6R and CCL3 compared to controls (sIL-6R medians pg/ml: COPD 166.4 vs S 101.1 vs HNS 96.4; CCL3 medians pg/ml: COPD 117.9 vs S 0 vs HNS 2.7). COPD sIL-6R levels were significantly correlated with sputum neutrophil (r = 0.5, p < 0.0001) and macrophage (r = 0.3, p = 0.01) counts. Immunocytochemical analysis revealed that CCR5 and CCR1 were exclusively expressed on airway macrophages. CONCLUSION: Enhanced airway generation of sIL-6R may promote IL-6 trans-signaling in COPD. Associated upregulation of CCL3 may facilitate the recruitment of macrophages into the airways by ligation of CCR1 and CCR5. ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (doi:10.1186/s12931-014-0103-4) contains supplementary material, which is available to authorized users
    corecore