5,424 research outputs found

    The Structure on Invariant Measures of C1C^1 generic diffeomorphisms

    Full text link
    Let Λ\Lambda be an isolated non-trival transitive set of a C1C^1 generic diffeomorphism f\in\Diff(M). We show that the space of invariant measures supported on Λ\Lambda coincides with the space of accumulation measures of time averages on one orbit. Moreover, the set of points having this property is residual in Λ\Lambda (which implies the set of irregular+^+ points is also residual in Λ\Lambda). As an application, we show that the non-uniform hyperbolicity of irregular+^+ points in Λ\Lambda with totally 0 measure (resp., the non-uniform hyperbolicity of a generic subset in Λ\Lambda) determines the uniform hyperbolicity of Λ\Lambda

    Supercurrent transferring through c-axis cuprate Josephson junctions with thick normal-metal-bridge

    Full text link
    With simple but exactly solvable model, we investigate the supercurrent transferring through the c-axis cuprate superconductor-normal metal-superconductor junctions with the clean normal metal much thicker than its coherence length. It is shown that the supercurrent as a function of thickness of the normal metal decreases much slower than the exponential decaying expected by the proximity effect. The present result may account for the giant proximity effect observed in the c-axis cuprate SNS junctions.Comment: 6 pages, 4 figure

    The Assembly History of Field Spheroidals: Evolution of Mass-to-light Ratios and Signatures of Recent Star Formation

    Full text link
    We present a comprehensive catalog of high signal-to-noise spectra obtained with the DEIMOS spectrograph on the Keck II telescope for a sample of F850LP<22.43 (AB) field spheroidal (E+S0s; 163) and bulge dominated disk (61) galaxies in the redshift range 0.2<z<1.2. We examine the zero point, tilt and scatter of the Fundamental Plane (FP) as a function of redshift and morphological properties, carefully accounting for luminosity-dependent biases via Montecarlo simulations. The evolution of the overall FP can be represented by a mean change in effective mass-to-light ratio given by <d \log (M/L_{\rm B})/dz>=-0.72^{+0.07}_{-0.05}\pm0.04. However, this evolution depends significantly on the dynamical mass, being slower for larger masses as reported in a previous letter. In addition, we separately show the intrinsic scatter of the FP increases with redshift as d(rms(M/L_{\rm B}))/dz=0.040\pm0.015. Although these trends are consistent with single burst populations which formed at zf>2z_f>2 for high mass spheroidals and z_{f}~1.2 for lower mass systems, a more realistic picture is that most of the stellar mass formed in all systems at z>2 with subsequent activity continuing to lower redshifts (z<1.2). The fraction of stellar mass formed at recent times depend strongly on galactic mass, ranging from <1% for masses above 10^{11.5} M_{\odot} to 20-40% below 10^{11} M_{\odot}. Independent support for recent activity is provided by spectroscopic ([\ion{O}{2}] emission, H\delta) and photometric (blue cores and broad-band colors) diagnostics. Via the analysis of a large sample with many independent diagnostics, we are able to reconcile previously disparate interpretations of the assembly history of field spheroidals. [Abridged]Comment: 26 pages including 24 figures, submitted to ApJ. Complete and compact version with full resolution images available at http://www.astro.ucla.edu/~ttreu/ms.pd

    A note on Zolotarev optimal rational approximation for the overlap Dirac operator

    Full text link
    We discuss the salient features of Zolotarev optimal rational approximation for the inverse square root function, in particular, for its applications in lattice QCD with overlap Dirac quark. The theoretical error bound for the matrix-vector multiplication Hw(Hw2)1/2Y H_w (H_w^2)^{-1/2}Y is derived. We check that the error bound is always satisfied amply, for any QCD gauge configurations we have tested. An empirical formula for the error bound is determined, together with its numerical values (by evaluating elliptic functions) listed in Table 2 as well as plotted in Figure 3. Our results suggest that with Zolotarev approximation to (Hw2)1/2 (H_w^2)^{-1/2} , one can practically preserve the exact chiral symmetry of the overlap Dirac operator to very high precision, for any gauge configurations on a finite lattice.Comment: 23 pages, 5 eps figures, v2:minor clarifications, and references added, to appear in Phys. Rev.

    The mechanism of hole carrier generation and the nature of pseudogap- and 60K-phases in YBCO

    Full text link
    In the framework of the model assuming the formation of NUC on the pairs of Cu ions in CuO2_{2} plane the mechanism of hole carrier generation is considered and the interpretation of pseudogap and 60 K-phases in YBa2Cu3O6+δYBa_{2}Cu_{3}O_{6+\delta}. is offered. The calculated dependences of hole concentration in YBa2Cu3O6+δYBa_{2}Cu_{3}O_{6+\delta} on doping δ\delta and temperature are found to be in a perfect quantitative agreement with experimental data. As follows from the model the pseudogap has superconducting nature and arises at temperature T>Tc>TcT^{*}>T_{c\infty}>T_{c} in small clusters uniting a number of NUC's due to large fluctuations of NUC occupation. Here TcT_{c\infty} and TcT_{c} are the superconducting transition temperatures of infinite and finite clusters of NUC's, correspondingly. The calculated T(δ)T^{*}(\delta) and Tn(δ)T_{n}(\delta) dependences are in accordance with experiment. The area between T(δ)T^{*}(\delta) and Tn(δ)T_{n}(\delta) corresponds to the area of fluctuations where small clusters fluctuate between superconducting and normal states owing to fluctuations of NUC occupation. The results may serve as important arguments in favor of the proposed model of HTSC.Comment: 12 pages, 7 figure

    A practical implementation of the Overlap-Dirac operator

    Full text link
    A practical implementation of the Overlap-Dirac operator 1+γ5ϵ(H)2{{1+\gamma_5\epsilon(H)}\over 2} is presented. The implementation exploits the sparseness of HH and does not require full storage. A simple application to parity invariant three dimensional SU(2) gauge theory is carried out to establish that zero modes related to topology are exactly reproduced on the lattice.Comment: Y-axis label in figure correcte

    Vertical transport and electroluminescence in InAs/GaSb/InAs structures: GaSb thickness and hydrostatic pressure studies

    Full text link
    We have measured the current-voltage (I-V) of type II InAs/GaSb/InAs double heterojunctions (DHETs) with 'GaAs like' interface bonding and GaSb thickness between 0-1200 \AA. A negative differential resistance (NDR) is observed for all DHETs with GaSb thickness >> 60 \AA below which a dramatic change in the shape of the I-V and a marked hysteresis is observed. The temperature dependence of the I-V is found to be very strong below this critical GaSb thickness. The I-V characteristics of selected DHETs are also presented under hydrostatic pressures up to 11 kbar. Finally, a mid infra-red electroluminescence is observed at 1 bar with a threshold at the NDR valley bias. The band profile calculations presented in the analysis are markedly different to those given in the literature, and arise due to the positive charge that it is argued will build up in the GaSb layer under bias. We conclude that the dominant conduction mechanism in DHETs is most likely to arise out of an inelastic electron-heavy-hole interaction similar to that observed in single heterojunctions (SHETs) with 'GaAs like' interface bonding, and not out of resonant electron-light-hole tunnelling as proposed by Yu et al. A Zener tunnelling mechanism is shown to contribute to the background current beyond NDR.Comment: 8 pages 12 fig

    Proximity effect, quasiparticle transport, and local magnetic moment in ferromagnet-d-wave superconductor junctions

    Full text link
    The proximity effect, quasiparticle transport, and local magnetic moment in ferromagnet--d-wave superconductor junctions with {110}-oriented interface are studied by solving self-consistently the Bogoliubov-de Gennes equations within an extended Hubbard model. It is found that the proximity induced order parameter oscillates in the ferromagnetic region. The modulation period is shortened with the increased exchange field while the oscillation amplitude is depressed by the interfacial scattering. With the determined superconducting energy gap, a transfer matrix method is proposed to compute the subgap conductance within a scattering approach. Many novel features including the zero-bias conductance dip and splitting are exhibited with appropriate values of the exchange field and interfacial scattering strength. The conductance spectrum can be influenced seriously by the spin-flip interfacial scattering. In addition, a sizable local magnetic moment near the {110}-oriented surface of the d-wave superconductor is discussed.Comment: 10 pages, 16 ps-figures, to appear in Phys. Rev.

    Structural investigation of MOVPE-Grown GaAs on Ge by X-ray techniques

    Get PDF
    The selection of appropriate characterisation methodologies is vital for analysing and comprehending the sources of defects and their influence on the properties of heteroepitaxially grown III-V layers. In this work we investigate the structural properties of GaAs layers grown by Metal-Organic Vapour Phase Epitaxy (MOVPE) on Ge substrates – (100) with 6⁰ offset towards – under various growth conditions. Synchrotron X-ray topography (SXRT) is employed to investigate the nature of extended linear defects formed in GaAs epilayers. Other X-ray techniques, such as reciprocal space mapping (RSM) and triple axis ω-scans of (00l)-reflections (l = 2, 4, 6) are used to quantify the degree of relaxation and presence of antiphase domains (APDs) in the GaAs crystals. The surface roughness is found to be closely related to the size of APDs formed at the GaAs/Ge heterointerface, as confirmed by X-ray diffraction (XRD), as well as atomic force microscopy (AFM), and transmission electron microscopy (TEM)
    corecore