771 research outputs found

    Spinor Bose Condensates in Optical Traps

    Full text link
    In an optical trap, the ground state of spin-1 Bosons such as 23^{23}Na, 39^{39}K, and 87^{87}Rb can be either a ferromagnetic or a "polar" state, depending on the scattering lengths in different angular momentum channel. The collective modes of these states have very different spin character and spatial distributions. While ordinary vortices are stable in the polar state, only those with unit circulation are stable in the ferromagnetic state. The ferromagnetic state also has coreless (or Skyrmion) vortices like those of superfluid 3^{3}He-A. Current estimates of scattering lengths suggest that the ground states of 23^{23}Na and 87^{87}Rb condensate are a polar state and a ferromagnetic state respectively.Comment: 11 pages, no figures. email : [email protected]

    Stereotaxic gamma knife surgery in treatment of critically located pilocytic astrocytoma: preliminary result

    Get PDF
    BACKGROUND: Low-grade gliomas are uncommon primary brain tumors, located more often in the posterior fossa, optic pathway, and brain stem and less commonly in the cerebral hemispheres. CASE PRESENTATIONS: Two patients with diagnosed recurrent cystic pilocytic astrocytoma critically located within the brain (thalamic and brain stem) were treated with gamma knife surgery. Gamma knife surgery (GKS) did improve the patient's clinical condition very much which remained stable later on. Progressive reduction on the magnetic resonance imaging (MRI) studies of the solid part of the tumor and almost disappearance of the cystic component was achieved within the follow-up period of 36 months in the first case with the (thalamic located lesion) and 22 months in the second case with the (brain stem located lesion). CONCLUSION: Gamma knife surgery represents an alternate tool in the treatment of recurrent and/or small postoperative residual pilocytic astrocytoma especially if they are critically locate

    Quantum Hall Ferromagnets

    Full text link
    It is pointed out recently that the ν=1/m\nu=1/m quantum Hall states in bilayer systems behave like easy plane quantum ferromagnets. We study the magnetotransport of these systems using their ``ferromagnetic" properties and a novel spin-charge relation of their excitations. The general transport is a combination of the ususal Hall transport and a time dependent transport with quantizedquantized time average. The latter is due to a phase slippage process in spacetimespacetime and is characterized by two topological constants. (Figures will be provided upon requests).Comment: 4 pages, Revtex, Ohio State Universit

    Dual neutral variables and knot solitons in triplet superconductors

    Full text link
    In this paper we derive a dual presentation of free energy functional for spin-triplet superconductors in terms of gauge-invariant variables. The resulting equivalent model in ferromagnetic phase has a form of a version of the Faddeev model. This allows one in particular to conclude that spin-triplet superconductors allow formation of stable finite-length closed vortices (the knotted solitons).Comment: Replaced with version published in PRL (added a discussion of the effect of the coupling of the fields {\vec s} and {\vec C} on knot stability). Latest updates of the paper and miscellaneous links related to knotted solitons are also available at the homepage of the author http://www.teorfys.uu.se/PEOPLE/egor/ . Animations of knotted solitons by Hietarinta and Salo are available at http://users.utu.fi/h/hietarin/knots/c45_p2.mp

    Laser probing of Cooper-paired trapped atoms

    Full text link
    We consider a gas of trapped Cooper-paired fermionic atoms which are manipulated by laser light. The laser induces a transition from an internal state with large negative scattering length (superfluid) to one with weaker interactions (normal gas). We show that the process can be used to detect the presence of the superconducting order parameter. Also, we propose a direct way of measuring the size of the gap in the trap. The efficiency and feasibility of this probing method is investigated in detail in different physical situations.Comment: 9 pages, 8 figure

    Frequencies and Damping rates of a 2D Deformed Trapped Bose gas above the Critical Temperature

    Full text link
    We derive the equation of motion for the velocity fluctuations of a 2D deformed trapped Bose gas above the critical temperature in the hydrodynamical regime. From this equation, we calculate the eigenfrequencies for a few low-lying excitation modes. Using the method of averages, we derive a dispersion relation in a deformed trap that interpolates between the collisionless and hydrodynamic regimes. We make use of this dispersion relation to calculate the frequencies and the damping rates for monopole and quadrupole mode in both the regimes. We also discuss the time evolution of the wave packet width of a Bose gas in a time dependent as well as time independent trap.Comment: 13 pages, latex fil

    Fragmentation of Bose-Einstein Condensates

    Full text link
    We present the theory of bosonic systems with multiple condensates, unifying disparate models which are found in the literature, and discuss how degeneracies, interactions, and symmetries conspire to give rise to this unusual behavior. We show that as degeneracies multiply, so do the types of fragmentation, eventually leading to strongly correlated states with no trace of condensation.Comment: 16 pages, 1 figure, revtex
    • …
    corecore