1,415 research outputs found

    Atomic kinetic energy, momentum distribution and structure of solid neon at zero-temperature

    Full text link
    We report on the calculation of the ground-state atomic kinetic energy, EkE_{k}, and momentum distribution of solid Ne by means of the diffusion Monte Carlo method and Aziz HFD-B pair potential. This approach is shown to perform notably for this crystal since we obtain very good agreement with respect to experimental thermodynamic data. Additionally, we study the structural properties of solid Ne at densities near the equilibrium by estimating the radial pair-distribution function, Lindemann's ratio and atomic density profile around the positions of the perfect crystalline lattice. Our value for EkE_{k} at the equilibrium density is 41.51(6)41.51(6) K, which agrees perfectly with the recent prediction made by Timms {\it et al.}, 41(2)41(2) K, based on their deep-inelastic neutron scattering experiments carried out over the temperature range 4204 - 20 K, and also with previous path integral Monte Carlo results obtained with the Lennard-Jones and Aziz HFD-C2 atomic pairwise interactions. The one-body density function of solid Ne is calculated accurately and found to fit perfectly, within statistical uncertainty, to a Gaussian curve. Furthermore, we analyze the degree of anharmonicity of solid Ne by calculating some of its microscopic ground-state properties within traditional harmonic approaches. We provide insightful comparison to solid 4^4He in terms of the Debye model, in order to size the relevance of anharmonic effects in Ne.Comment: 20 pages, 7 figures. To be published in Physical Review

    Energy-saving compression valve of the rock drill

    Get PDF
    The relevance of the research is due to the necessity to create pneumatic rock drills with low air consumption. The article analyzes the reasons for low efficiency of percussive machines. The authors state that applying a single distribution body in the percussive mechanism does not allow carrying out a low-energy operating cycle of the mechanism. Using the studied device as an example, it is substantiated that applying a compression valve with two distribution bodies separately operating the working chambers makes it possible to significantly reduce the airflow. The authors describe the construction of a core drill percussive mechanism and the operation of a compression valve. It is shown that in the new percussive mechanism working chambers are cut off the circuit by the time when exhaust windows are opened by the piston and air is not supplied into the cylinder up to 20% of the cycle time. The air flow rate of the new mechanism was 3.8 m3/min. In comparison with the drill PK-75, the overall noise level of the new machine is lower by 8-10 dB, while the percussive mechanism efficiency is 2.3 times higher

    New measurement paradigms

    Get PDF
    This collection of New Measurement Paradigms papers represents a snapshot of the variety of measurement methods in use at the time of writing across several projects funded by the National Science Foundation (US) through its REESE and DR K–12 programs. All of the projects are developing and testing intelligent learning environments that seek to carefully measure and promote student learning, and the purpose of this collection of papers is to describe and illustrate the use of several measurement methods employed to achieve this. The papers are deliberately short because they are designed to introduce the methods in use and not to be a textbook chapter on each method. The New Measurement Paradigms collection is designed to serve as a reference point for researchers who are working in projects that are creating e-learning environments in which there is a need to make judgments about students’ levels of knowledge and skills, or for those interested in this but who have not yet delved into these methods

    Identification of genes expressed by immune cells of the colon that are regulated by colorectal cancer-associated variants.

    Get PDF
    A locus on human chromosome 11q23 tagged by marker rs3802842 was associated with colorectal cancer (CRC) in a genome-wide association study; this finding has been replicated in case-control studies worldwide. In order to identify biologic factors at this locus that are related to the etiopathology of CRC, we used microarray-based target selection methods, coupled to next-generation sequencing, to study 103 kb at the 11q23 locus. We genotyped 369 putative variants from 1,030 patients with CRC (cases) and 1,061 individuals without CRC (controls) from the Ontario Familial Colorectal Cancer Registry. Two previously uncharacterized genes, COLCA1 and COLCA2, were found to be co-regulated genes that are transcribed from opposite strands. Expression levels of COLCA1 and COLCA2 transcripts correlate with rs3802842 genotypes. In colon tissues, COLCA1 co-localizes with crystalloid granules of eosinophils and granular organelles of mast cells, neutrophils, macrophages, dendritic cells and differentiated myeloid-derived cell lines. COLCA2 is present in the cytoplasm of normal epithelial, immune and other cell lineages, as well as tumor cells. Tissue microarray analysis demonstrates the association of rs3802842 with lymphocyte density in the lamina propria (p = 0.014) and levels of COLCA1 in the lamina propria (p = 0.00016) and COLCA2 (tumor cells, p = 0.0041 and lamina propria, p = 6 × 10(-5)). In conclusion, genetic, expression and immunohistochemical data implicate COLCA1 and COLCA2 in the pathogenesis of colon cancer. Histologic analyses indicate the involvement of immune pathways

    Study of Optimal Perimetric Testing In Children (OPTIC): Development and feasibility of the kinetic perimetry reliability measure (KPRM)

    Get PDF
    INTRODUCTION: Interpretation of perimetric findings, particularly in children, relies on accurate assessment of test reliability, yet no objective measures of reliability exist for kinetic perimetry. We developed the kinetic perimetry reliability measure (KPRM), a quantitative measure of perimetric test reproducibility/reliability and report here its feasibility and association with subjective assessment of reliability. METHODS: Children aged 5-15 years, without an ophthalmic condition that affects the visual field, were recruited from Moorfields Eye Hospital and underwent Goldmann perimetry as part of a wider research programme on perimetry in children. Subjects were tested with two isopters and the blind spot was plotted, followed by a KPRM. Test reliability was also scored qualitatively using our examiner-based assessment of reliability (EBAR) scoring system, which standardises the conventional clinical approach to assessing test quality. The relationship between KPRM and EBAR was examined to explore the use of KPRM in assessing reliability of kinetic fields. RESULTS: A total of 103 children (median age 8.9 years; IQR: 7.1 to 11.8 years) underwent Goldmann perimetry with KPRM and EBAR scoring. A KPRM was achieved by all children. KPRM values increased with reducing test quality (Kruskal-Wallis, p=0.005), indicating greater testretest variability, and reduced with age (linear regression, p=0.015). One of 103 children (0.97%) demonstrated discordance between EBAR and KPRM. CONCLUSION: KPRM and EBAR are distinct but complementary approaches. Though scores show excellent agreement, KPRM is able to quantify withintest variability, providing data not captured by subjective assessment. Thus, we suggest combining KPRM with EBAR to aid interpretation of kinetic perimetry test reliability in children

    Kinetic energy of solid neon by Monte Carlo with improved Trotter- and finite-size extrapolation

    Full text link
    The kinetic energy of solid neon is calculated by a path-integral Monte Carlo approach with a refined Trotter- and finite-size extrapolation. These accurate data present significant quantum effects up to temperature T=20 K. They confirm previous simulations and are consistent with recent experiments.Comment: Text and figures revised for minor corrections (4 pages, 3 figures included by psfig

    Zircon ages in granulite facies rocks: decoupling from geochemistry above 850 °C?

    Get PDF
    Granulite facies rocks frequently show a large spread in their zircon ages, the interpretation of which raises questions: Has the isotopic system been disturbed? By what process(es) and conditions did the alteration occur? Can the dates be regarded as real ages, reflecting several growth episodes? Furthermore, under some circumstances of (ultra-)high-temperature metamorphism, decoupling of zircon U–Pb dates from their trace element geochemistry has been reported. Understanding these processes is crucial to help interpret such dates in the context of the P–T history. Our study presents evidence for decoupling in zircon from the highest grade metapelites (> 850 °C) taken along a continuous high-temperature metamorphic field gradient in the Ivrea Zone (NW Italy). These rocks represent a well-characterised segment of Permian lower continental crust with a protracted high-temperature history. Cathodoluminescence images reveal that zircons in the mid-amphibolite facies preserve mainly detrital cores with narrow overgrowths. In the upper amphibolite and granulite facies, preserved detrital cores decrease and metamorphic zircon increases in quantity. Across all samples we document a sequence of four rim generations based on textures. U–Pb dates, Th/U ratios and Ti-in-zircon concentrations show an essentially continuous evolution with increasing metamorphic grade, except in the samples from the granulite facies, which display significant scatter in age and chemistry. We associate the observed decoupling of zircon systematics in high-grade non-metamict zircon with disturbance processes related to differences in behaviour of non-formula elements (i.e. Pb, Th, U, Ti) at high-temperature conditions, notably differences in compatibility within the crystal structure

    In Situ Coordinated Analysis of Carbonaceous Chondrite Organic Matter

    Get PDF
    Microanalytical studies of carbonaceous chondrites (CCs) have identified a vast array of isotopically, chemically and texturally distinct organic components. These components were synthesized and processed within a range of physical and chemical environments, including the interstellar medium, the solar nebula and within asteroids. The nature and abundance of these molecules can be used to unravel the geochemical and isotopic record of their origins as well as their subsequent evolutionary journey
    corecore