404 research outputs found
Atom-by-Atom Substitution of Mn in GaAs and Visualization of their Hole-Mediated Interactions
The discovery of ferromagnetism in Mn doped GaAs [1] has ignited interest in
the development of semiconductor technologies based on electron spin and has
led to several proof-of-concept spintronic devices [2-4]. A major hurdle for
realistic applications of (Ga,Mn)As, or other dilute magnetic semiconductors,
remains their below room-temperature ferromagnetic transition temperature.
Enhancing ferromagnetism in semiconductors requires understanding the
mechanisms for interaction between magnetic dopants, such as Mn, and
identifying the circumstances in which ferromagnetic interactions are maximized
[5]. Here we report the use of a novel atom-by-atom substitution technique with
the scanning tunnelling microscope (STM) to perform the first controlled atomic
scale study of the interactions between isolated Mn acceptors mediated by the
electronic states of GaAs. High-resolution STM measurements are used to
visualize the GaAs electronic states that participate in the Mn-Mn interaction
and to quantify the interaction strengths as a function of relative position
and orientation. Our experimental findings, which can be explained using
tight-binding model calculations, reveal a strong dependence of ferromagnetic
interaction on crystallographic orientation. This anisotropic interaction can
potentially be exploited by growing oriented Ga1-xMnxAs structures to enhance
the ferromagnetic transition temperature beyond that achieved in randomly doped
samples. Our experimental methods also provide a realistic approach to create
precise arrangements of single spins as coupled quantum bits for memory or
information processing purposes
Study of the Decays B0 --> D(*)+D(*)-
The decays B0 --> D*+D*-, B0 --> D*+D- and B0 --> D+D- are studied in 9.7
million Y(4S) --> BBbar decays accumulated with the CLEO detector. We determine
Br(B0 --> D*+D*-) = (9.9+4.2-3.3+-1.2)e-4 and limit Br(B0 --> D*+D-) < 6.3e-4
and Br(B0 --> D+D-) < 9.4e-4 at 90% confidence level (CL). We also perform the
first angular analysis of the B0 --> D*+D*- decay and determine that the
CP-even fraction of the final state is greater than 0.11 at 90% CL. Future
measurements of the time dependence of these decays may be useful for the
investigation of CP violation in neutral B meson decays.Comment: 21 pages, 5 figures, submitted to Phys. Rev.
Measurement of B(/\c->pKpi)
The /\c->pKpi yield has been measured in a sample of two-jet continuum events
containing a both an anticharm tag (Dbar) as well as an antiproton (e+e- ->
Dbar pbar X), with the antiproton in the hemisphere opposite the Dbar. Under
the hypothesis that such selection criteria tag e+e- -> Dbar pbar (/\c) X
events, the /\c->pkpi branching fraction can be determined by measuring the
pkpi yield in the same hemisphere as the antiprotons in our Dbar pbar X sample.
Combining our results from three independent types of anticharm tags, we obtain
B(/\c->pKpi)=(5.0+/-0.5+/-1.2)
Search for the Decays B^0 -> D^{(*)+} D^{(*)-}
Using the CLEO-II data set we have searched for the Cabibbo-suppressed decays
B^0 -> D^{(*)+} D^{(*)-}. For the decay B^0 -> D^{*+} D^{*-}, we observe one
candidate signal event, with an expected background of 0.022 +/- 0.011 events.
This yield corresponds to a branching fraction of Br(B^0 -> D^{*+} D^{*-}) =
(5.3^{+7.1}_{-3.7}(stat) +/- 1.0(syst)) x 10^{-4} and an upper limit of Br(B^0
-> D^{*+} D^{*-}) D^{*\pm} D^\mp and
B^0 -> D^+ D^-, no significant excess of signal above the expected background
level is seen, and we calculate the 90% CL upper limits on the branching
fractions to be Br(B^0 -> D^{*\pm} D^\mp) D^+
D^-) < 1.2 x 10^{-3}.Comment: 12 page postscript file also available through
http://w4.lns.cornell.edu/public/CLNS, submitted to Physical Review Letter
Improved Measurement of the Pseudoscalar Decay Constant
We present a new determination of the Ds decay constant, f_{Ds} using 5
million continuum charm events obtained with the CLEO II detector. Our value is
derived from our new measured ratio of widths for Ds -> mu nu/Ds -> phi pi of
0.173+/- 0.021 +/- 0.031. Taking the branching ratio for Ds -> phi pi as (3.6
+/- 0.9)% from the PDG, we extract f_{Ds} = (280 +/- 17 +/- 25 +/- 34){MeV}. We
compare this result with various model calculations.Comment: 23 page postscript file, postscript file also available through
http://w4.lns.cornell.edu/public/CLN
Memory category fluency, memory specificity, and the fading affect bias for positive and negative autobiographical events: performance on a good day–bad day task in healthy and depressed individuals
In mentally healthy individuals, autobiographical memory is typically biased toward positive events, which may help to maintain psychological well-being. Our aim was to assess a range of important positive memory biases in the mentally healthy and explore the possibility that these biases are mitigated in those with mental health problems. We administered a novel recall paradigm that required recollection of multiple good and bad past events (the Good Day–Bad Day task) to healthy and depressed individuals. This allowed us to explore differences in memory category fluency (i.e., the ability to generate integrated sets of associated events) for positive and negative memories, along with memory specificity, and fading affect bias—a greater reduction in the intensity of memory-related affect over time for negative versus positive events. We found that healthy participants demonstrated superior category fluency for positive relative to negative events but that this effect was absent in depressed participants. Healthy participants exhibited a strong fading affect bias that was significantly mitigated, although still present, in depression. Finally, memory specificity was reduced in depression for both positive and negative memories. Findings demonstrate that the positive bias associated with mental health is maintained by multiple autobiographical memory processes and that depression is as much a function of the absence of these positive biases as it is the presence of negative biases. Results provide important guidance for developing new treatments for improving mental health. (PsycINFO Database Record (c) 2019 APA, all rights reserved
Observation of the Charmed Baryon at CLEO
The CLEO experiment at the CESR collider has used 13.7 fb of data to
search for the production of the (css-ground state) in
collisions at {\rm GeV}. The modes used to
study the are ,
, , , and
. We observe a signal of 40.49.0(stat) events
at a mass of 2694.62.6(stat)1.9(syst) {\rm MeV/}, for all modes
combined.Comment: 10 pages postscript, also available through
http://w4.lns.cornell.edu/public/CLN
Measurement of the Relative Branching Fraction of to Charged and Neutral B-Meson Pairs
We analyze 9.7 x 10^6 B\bar{B}$ pairs recorded with the CLEO detector to
determine the production ratio of charged to neutral B-meson pairs produced at
the Y(4S) resonance. We measure the rates for B^0 -> J/psi K^{(*)0} and B^+ ->
J/psi K^{(*)+} decays and use the world-average B-meson lifetime ratio to
extract the relative widths f+-/f00 = Gamma(Y(4S) -> B+B-)/Gamma(Y(4S) ->
B0\bar{B0}) = = 1.04 +/- 0.07(stat) +/- 0.04(syst). With the assumption that
f+- + f00 = 1, we obtain f00 = 0.49 +/- 0.02(stat) +/- 0.01(syst) and f+- =
0.51 +/- 0.02(stat) +/- 0.01(syst). This production ratio and its uncertainty
apply to all exclusive B-meson branching fractions measured at the Y(4S)
resonance.Comment: 11 pages postscript, also available through
http://w4.lns.cornell.edu/public/CLN
Measurements of B --> D_s^{(*)+} D^{*(*)} Branching Fractions
This article describes improved measurements by CLEO of the and branching fractions, and first evidence
for the decay , where
represents the sum of the , , and
L=1 charm meson states. Also reported is the first
measurement of the polarization in the decay . A partial reconstruction technique, employing only the fully
reconstructed and slow pion from the decay, enhances sensitivity. The observed branching fractions are
, , and , where the first error is statistical,
the second systematic, and the third is due to the uncertainty in the branching fraction. The measured longitudinal
polarization, , is consistent with
the factorization prediction of 54%.Comment: 26 pages (LaTeX), 15 figures. To be submitted to PR
First Observation of and Decays
We have observed new channels for decays with an in the final
state. We study 3-prong tau decays, using the and
\eta\to 3\piz decay modes and 1-prong decays with two \piz's using the
channel. The measured branching fractions are
\B(\tau^{-}\to \pi^{-}\pi^{-}\pi^{+}\eta\nu_{\tau})
=(3.4^{+0.6}_{-0.5}\pm0.6)\times10^{-4} and \B(\tau^{-}\to
\pi^{-}2\piz\eta\nu_{\tau}
=(1.4\pm0.6\pm0.3)\times10^{-4}. We observe clear evidence for
substructure and measure \B(\tau^{-}\to
f_1\pi^{-}\nu_{\tau})=(5.8^{+1.4}_{-1.3}\pm1.8)\times10^{-4}. We have also
searched for production and obtain 90% CL upper limits
\B(\tau^{-}\to \pi^{-}\eta'\nu_\tau)<7.4\times10^{-5} and \B(\tau^{-}\to
\pi^{-}\piz\eta'\nu_\tau)<8.0\times10^{-5}.Comment: 11 page postscript file, postscript file also available through
http://w4.lns.cornell.edu/public/CLN
- …
