21 research outputs found

    Preparative aspects of supported Ni2P catalysts for reductive upgrading of technical lignin to aromatics

    Get PDF
    Supported Ni2P was evaluated as a hydrodeoxygenation (HDO) catalyst in the reductive upgrading of a soda lignin in supercritical ethanol by a hydrotalcite-derived mixed Cu-Mg-Al oxide (CuMgAlOx) catalyst. Various Ni2P catalysts were prepared by different approaches on silica, γ-alumina and a siliceous amorphous silica-alumina (ASA) supports. Calcined NiO/SiO2 precursors were impregnated with phosphate, phosphite and hypophosphite followed by reduction. With γ-alumina, the desired Ni2P could not be obtained, presumably due to the reaction of the P-source with alumina. NiO on ASA could be converted to Ni2P by addition of phosphite, preferably at a P/Ni ratio of 1. Low P/Ni ratio avoids blockage of the pores by P-oxide species remaining after reduction. By further comparison to a sol–gel prepared NiO/SiO2 and co-impregnated silica, it was established that the most active Ni2P catalyst was obtained by impregnation of NiO/SiO2 with phosphate at P/Ni = 1 and reduction at 620 °C. In combination with CuMgAlOx, more than half of soda lignin can be converted to aromatics monomers with a relatively high degree of deoxygenation and limited degree of ring hydrogenation. The co-catalyst system is more active than the separate catalysts

    Lignin depolymerization over porous copper-based mixed-oxide catalysts in supercritical ethanol

    No full text
    This Chapter explains the roles of the catalyst and solvent. In lignin depolymerization by CuMgAl mixed-oxide catalysts, the use of supercritical ethanol as a solvent was found to be significantly more effective in producing monomers and avoiding heavy lignin residue and char formation than using methanol. The effect of reaction temperature and time are evaluated during depolymerization of lignin. Without catalyst and with increasing the reaction temperature, both the yield of lignin monomers and char are increased, the yield of light lignin residue decreased. However, without catalyst the reaction is dominated by char-forming reactions. The chapter describes the effect of catalyst composition in the depolymerization of soda lignin in supercritical ethanol. The higher the basicity of the catalyst, the higher the amount of alcohols and esters formed via Guerbet-type and esterification reactions, and the less repolymerized products are formed

    Transition metal (Ti, Mo, Nb, W) nitride catalysts for lignin depolymerisation

    Get PDF
    Metal nitrides are promising catalysts for depolymerisation of lignin in supercritical ethanol; cheap and abundant titanium nitride affords an aromatic monomer yield of 19 wt% from soda lignin. The reaction mechanism is discussed on the basis of the products and a guaiacol model compound study

    Synergy in lignin upgrading by a combination of Cu-based mixed oxide and Ni-phosphide catalysts in supercritical ethanol

    No full text
    The depolymerization of lignin to bioaromatics usually requires a hydrodeoxygenation (HDO) step to lower the oxygen content. A mixed Cu–Mg–Al oxide (CuMgAlOx) is an effective catalyst for the depolymerization of lignin in supercritical ethanol. We explored the use of Ni-based cocatalysts, i.e. Ni/SiO2, Ni2P/SiO2, and Ni/ASA (ASA = amorphous silica alumina), with the aim of combining lignin depolymerization and HDO in a single reaction step. While the silica-supported catalysts were themselves hardly active in lignin upgrading, Ni/ASA displayed comparable lignin monomer yield as CuMgAlOx. A drawback of using an acidic support is extensive dehydration of the ethanol solvent. Instead, combining CuMgAlOx with Ni/SiO2 and especially Ni2P/SiO2 proved to be effective in increasing the lignin monomer yield, while at the same time reducing the oxygen content of the products. With Ni2P/SiO2, the lignin monomer yield was 53 wt %, leading to nearly complete deoxygenation of the aromatic products

    Ethanol as capping agent and formaldehyde scavenger for efficient depolymerization of lignin to aromatics

    Get PDF
    Obtaining renewable fuels and chemicals from lignin presents an important challenge to the use of lignocellulosic biomass in order to meet sustainability and energy goals. We report on a thermocatalytic process for the depolymerization of lignin in supercritical ethanol over a CuMgAlOx catalyst. Ethanol as solvent results in much higher monomer yields than methanol, because ethanol effectively scavenges formaldehyde derived from lignin. Experiments with phenol and alkylated phenols point out the critical role of phenolic –OH groups and formaldehyde in undesired repolymerization reactions. O-alkylation and C-alkylation capping reactions with ethanol hinder repolymerization of the phenolic monomers formed during lignin disassembly. After reaction in ethanol at 380 °C for 8 h, this process delivers high yield of mainly alkylated mono-aromatics (60–86 wt%, depending on the lignin used) with a significant degree of deoxygenation. The oxygen-free aromatics can be used to replace reformate or serve as base aromatic chemicals; the oxygenated aromatics can be used as low-sooting diesel fuel additives and as building blocks for polymers

    Catalytic depolymerization of lignin in supercritical ethanol

    No full text
    One-step valorization of soda lignin in supercritical ethanol using a CuMgAlOx catalyst results in high monomer yield (23 wtÂż%) without char formation. Aromatics are the main products. The catalyst combines excellent deoxygenation with low ring-hydrogenation activity. Almost half of the monomer fraction is free from oxygen. Elemental analysis of the THF-soluble lignin residue after 8 h reaction showed a 68Âż% reduction in O/C and 24Âż% increase in H/C atomic ratios as compared to the starting Protobind P1000 lignin. Prolonged reaction times enhanced lignin depolymerization and reduced the amount of repolymerized products. Phenolic hydroxyl groups were found to be the main actors in repolymerization and char formation. 2D HSQC NMR analysis evidenced that ethanol reacts by alkylation and esterification with lignin fragments. Alkylation was found to play an important role in suppressing repolymerization. Ethanol acts as a capping agent, stabilizing the highly reactive phenolic intermediates by O-alkylating the hydroxyl groups and by C-alkylating the aromatic rings. The use of ethanol is significantly more effective in producing monomers and avoiding char than the use of methanol. A possible reaction network of the reactions between the ethanol and lignin fragments is discussed

    Effective release of lignin fragments from lignocellulose by lewis acid metal triflates in the lignin-first approach

    No full text
    Adding value to lignin, the most complex and recalcitrant fraction in lignocellulosic biomass, is highly relevant to costefficient operation of biorefineries. We report the use of homogeneous metal triflates to rapidly release lignin from biomass. Combined with metal-catalyzed hydrogenolysis, the process separates woody biomass into few lignin-derived alkylmethoxyphenols and cellulose under mild conditions. Model compound studies show the unique catalytic properties of metal triflates in cleaving lignin–carbohydrate interlinkages. The lignin fragments can then be disassembled by hydrogenolysis. The tandem process is flexible and allows obtaining good aromatic monomer yields from different woods (36–48 wt %, lignin base). The cellulose-rich residue is an ideal feedstock for established biorefining processes. The highly productive strategy is characterized by short reaction times, low metal triflate catalyst requirement, and leaving cellulose largely untouched.\u3cbr/\u3

    Effective release of lignin fragments from Lignocellulose by Lewis Acid Metal triflates in the lignin-first approach

    No full text
    Cover image: Invited for this month′s cover is the group of Emiel Hensen at the Eindhoven University of Technology. The image shows how the lignin component can be effectively released from wood and converted into aromatics over a tandem Al-triflate and Pd/C catalyst
    corecore