9 research outputs found

    Phosphoramidates and phosphonamidates (ProTides) with antiviral activity

    Get PDF
    Following the first report on the nucleoside phosphoramidate (ProTide) prodrug approach in 1990 by Chris McGuigan, the extensive investigation of ProTide technology has begun in many laboratories. Designed with aim to overcome limitations and the key resistance mechanisms associated with nucleoside analogues used in the clinic (poor cellular uptake, poor conversion to the 5′-monophosphate form), the ProTide approach has been successfully applied to a vast number of nucleoside analogues with antiviral and anticancer activity. ProTides consist of a 5′-nucleoside monophosphate in which the two hydroxyl groups are masked with an amino acid ester and an aryloxy component which once in the cell is enzymatically metabolized to deliver free 5′-monophosphate, which is further transformed to the active 5′-triphosphate form of the nucleoside analogue. In this review, the seminal contribution of Chris McGuigan’s research to this field is presented. His technology proved to be extremely successful in drug discovery and has led to two Food and Drug Administration-approved antiviral agents

    Design, synthesis, and biological evaluation of novel indoles targeting the influenza PB2 cap binding region

    No full text
    In the search for novel influenza inhibitors we evaluated 7-fluoro-substituted indoles as bioisosteric replacements for the 7-azaindole scaffold of Pimodivir, a PB2 (polymerase basic protein 2) inhibitor currently in clinical development. Specifically, a 5,7-difluoroindole derivative 11a was identified as a potent and metabolically stable influenza inhibitor. 11a demonstrated a favorable oral pharmacokinetic profile and in vivo efficacy in mice. In addition, it was found that 11a was not at risk of metabolism via aldehyde oxidase, an advantage over previously described inhibitors of this class. The crystal structure of 11a bound to influenza A PB2 cap region is disclosed here and deposited to the PDB
    corecore