178 research outputs found
Effect of heat stress and solar radiation on dry matter intake, biochemical indicators, production, and quality of Holstein and Jersey cows' milk
ABSTRACT The objective of this work was to compare the dry matter intake, milk yield and quality, physiological and biochemical parameters in Holstein (n=10) and Jersey (n=10) cows under heat stress and insolation, in two treatments: CL - cooling by ventilation and sprinkling and HS - heat stress and insolation. Data were submitted to ANOVA. There was an interaction between treatment and breed and day effect for dry matter intake. For consumption in % of body weight, CL and Jersey cows consumed more. CL cows produced more milk and 3.5% fat-corrected milk. Feed efficiency was similar between treatments and breeds. Fat, lactose, total solids, and somatic cell score did not differ. The concentration of milk urea nitrogen was higher for CL cows. Milk from Holstein cows had greater stability to alcohol, and from HT cows had a greater freezing point of milk. HT cows had higher respiratory rates in the morning and surface temperatures in the afternoon. There were no differences in beta-hydroxybutyrate and glucose concentrations. Heat stress, with insulation, reduces intake, especially in Holstein cows, as well as milk production and increases the freezing point of milk, respiratory rate, and surface temperature
Photometric redshifts and clustering of emission line galaxies selected jointly by DES and eBOSS
We present the results of the first test plates of the extended Baryon
Oscillation Spectroscopic Survey. This paper focuses on the emission line
galaxies (ELG) population targetted from the Dark Energy Survey (DES)
photometry. We analyse the success rate, efficiency, redshift distribution, and
clustering properties of the targets. From the 9000 spectroscopic redshifts
targetted, 4600 have been selected from the DES photometry. The total success
rate for redshifts between 0.6 and 1.2 is 71\% and 68\% respectively for a
bright and faint, on average more distant, samples including redshifts measured
from a single strong emission line. We find a mean redshift of 0.8 and 0.87,
with 15 and 13\% of unknown redshifts respectively for the bright and faint
samples. In the redshift range 0.6<z<1.2, for the most secure spectroscopic
redshifts, the mean redshift for the bright and faint sample is 0.85 and 0.9
respectively. Star contamination is lower than 2\%. We measure a galaxy bias
averaged on scales of 1 and 10~Mpc/h of 1.72 \pm 0.1 for the bright sample and
of 1.78 \pm 0.12 for the faint sample. The error on the galaxy bias have been
obtained propagating the errors in the correlation function to the fitted
parameters. This redshift evolution for the galaxy bias is in agreement with
theoretical expectations for a galaxy population with MB-5\log h < -21.0. We
note that biasing is derived from the galaxy clustering relative to a model for
the mass fluctuations. We investigate the quality of the DES photometric
redshifts and find that the outlier fraction can be reduced using a comparison
between template fitting and neural network, or using a random forest
algorithm
Digging deeper into the Southern skies: a compact Milky Way companion discovered in first-year Dark Energy Survey data
We use the first-year Dark Energy Survey (DES) data down to previously unprobed photometric depths to search for stellar systems in the Galactic halo, therefore complementing the previous analysis of the same data carried out by our group earlier this year. Our search is based on a matched filter algorithm that produces stellar density maps consistent with stellar population models of various ages, metallicities, and distances over the survey area. The most conspicuous density peaks in these maps have been identified automatically and ranked according to their significance and recurrence for different input models. We report the discovery of one additional stellar system besides those previously found by several authors using the same first-year DES data. The object is compact, and consistent with being dominated by an old and metal-poor population. DES 1 is found at high significance and appears in the DES images as a compact concentration of faint blue point sources. Assuming different spatial profile parameterizations, the best-fitting heliocentric distance and total absolute magnitude in the range of 77.6-87.1 kpc and -3.00 âČ MV âČ -2.21, respectively. The half-light radius of this object, rh Ë 10 pc and total luminosity are consistent with it being a low-mass halo cluster. It is also found to have a very elongated shape (Δ Ë 0.57). In addition, our deeper probe of DES first-year data confirms the recently reported satellite galaxy candidate Horologium II as a significant stellar overdensity. We also infer its structural properties and compare them to those reported in the literature
LSST: from Science Drivers to Reference Design and Anticipated Data Products
(Abridged) We describe here the most ambitious survey currently planned in
the optical, the Large Synoptic Survey Telescope (LSST). A vast array of
science will be enabled by a single wide-deep-fast sky survey, and LSST will
have unique survey capability in the faint time domain. The LSST design is
driven by four main science themes: probing dark energy and dark matter, taking
an inventory of the Solar System, exploring the transient optical sky, and
mapping the Milky Way. LSST will be a wide-field ground-based system sited at
Cerro Pach\'{o}n in northern Chile. The telescope will have an 8.4 m (6.5 m
effective) primary mirror, a 9.6 deg field of view, and a 3.2 Gigapixel
camera. The standard observing sequence will consist of pairs of 15-second
exposures in a given field, with two such visits in each pointing in a given
night. With these repeats, the LSST system is capable of imaging about 10,000
square degrees of sky in a single filter in three nights. The typical 5
point-source depth in a single visit in will be (AB). The
project is in the construction phase and will begin regular survey operations
by 2022. The survey area will be contained within 30,000 deg with
, and will be imaged multiple times in six bands, ,
covering the wavelength range 320--1050 nm. About 90\% of the observing time
will be devoted to a deep-wide-fast survey mode which will uniformly observe a
18,000 deg region about 800 times (summed over all six bands) during the
anticipated 10 years of operations, and yield a coadded map to . The
remaining 10\% of the observing time will be allocated to projects such as a
Very Deep and Fast time domain survey. The goal is to make LSST data products,
including a relational database of about 32 trillion observations of 40 billion
objects, available to the public and scientists around the world.Comment: 57 pages, 32 color figures, version with high-resolution figures
available from https://www.lsst.org/overvie
DESAlert: enabling real-time transient follow-up with dark energy survey data
The Dark Energy Survey is undertaking an observational programme imaging 1/4 of the southern hemisphere sky with unprecedented photometric accuracy. In the process of observing millions of faint stars and galaxies to constrain the parameters of the dark energy equation of state, the Dark Energy Survey will obtain pre-discovery images of the regions surrounding an estimated 100 gamma-ray bursts over 5 yr. Once gamma-ray bursts are detected by, e.g., the Swift satellite, the DES data will be extremely useful for follow-up observations by the transient astronomy community. We describe a recently-commissioned suite of software that listens continuously for automated notices of gamma-ray burst activity, collates information from archival DES data, and disseminates relevant data products back to the community in near-real-time. Of particular importance are the opportunities that non-public DES data provide for relative photometry of the optical counterparts of gamma-ray bursts, as well as for identifying key characteristics (e.g., photometric redshifts) of potential gamma-ray burst host galaxies. We provide the functional details of the DESAlert software, and its data products, and we show sample results from the application of DESAlert to numerous previously detected gamma-ray bursts, including the possible identification of several heretofore unknown gamma-ray burst hosts
- âŠ