10 research outputs found

    CD8+ T cells against multiple tumor-associated antigens in peripheral blood of midgut carcinoid patients.

    No full text
    Purpose The aim of the study was to identify immunogenic HLA-A*0201-binding epitopes derived from a number of classical midgut carcinoid-associated proteins. CD8(+) T cells recognizing tumor-associated antigen (TAA) epitopes are of great interest for the establishment of immunotherapy as a novel treatment for this type of malignancy. Experimental design Midgut carcinoid tumor specimens were microdissected and expression levels of potential TAAs were investigated by quantitative real time PCR. HLA-A*0201-binding motifs were selected using HLA peptide binding prediction algorithms and stabilization of HLA-A*0201 was verified using TAP-deficient T2 cells. Peripheral blood of midgut carcinoid patients was analyzed for peptide epitope recognition and the feasibility of generating peptide-reactive CD8(+) T cells in healthy blood donors was examined by an in vitro stimulation protocol using mature DCs. Activation of patient and healthy donor CD8(+) T cells was analyzed by intracellular flow cytometry staining of interferon gamma. Results Chromogranin A (CGA), tryptophan hydroxylase 1 (TPH-1), vesicular monoamine transporter 1 (VMAT-1), caudal type homeobox transcription factor 2 (CDX-2), and islet autoantigen 2 (IA-2) are properly expressed by midgut carcinoid tumor cells, with CGA mRNA expressed to greatest level. Midgut carcinoid patients have increased frequencies of peripheral blood CD8(+) T cells recognizing a pool of HLA-A*0201 peptides derived from these proteins compared to healthy age-matched individuals. Activated peptide-specific CD8(+) T cells could also be generated in healthy blood donors by in vitro stimulation. Conclusion We have identified a number of immunogenic midgut carcinoid-associated peptide epitopes recognized by CD8(+) T cells. We show that midgut carcinoid patients display immune recognition of their tumors. Memory CD8(+) T cells in patient blood are of great interest when pursuing an immunotherapeutic treatment strategy

    Large-scale bioreactor expansion of tumor-infiltrating lymphocytes.

    No full text
    BACKGROUND: The aim of this study was to evaluate an improved technique for expansion of tumor-infiltrating lymphocytes (TILs) based on the WAVE Bioreactor system with perfusion and tube-welding techniques. Our hypothesis was that the bioreactor would allow for optimized provision of nutrients and removal of spent media while minimizing culture volumes. These refinements might lead to a better quality of expanded cells with lower amounts of exhausted cells compared to static expansions in culture bags. PROCEDURES: Tumor-infiltrating lymphocytes from 4 melanoma patients were expanded and compared in parallel using either the WAVE Bioreactor 2/10 System or traditional static culture methods. The parameters viability, final cell number, phenotype and effector function were measured. RESULTS: Our results show that the bioreactor system with perfusion is suitable for large-scale expansion of tumor-infiltrating lymphocytes and allows for higher cell densities and absolute cell numbers as compared to static culture conditions. Phenotypic characteristics of TILs were compared pre and post expansion and showed no consistent difference between the two expansion methods. TILs harvested had the phenotype and function corresponding to intermediate to late effector cells. The system allows one technician to operate several bioreactors simultaneously, thereby reducing the labor for one expansion to approximately 1/3 compared to static expansion. DISCUSSION: The WAVE Bioreactor system is suitable for large-scale expansion of TILs. Due to constant perfusion of fresh media and removal of spent media much higher cell densities were achieved while the culture volume and the glucose and glutamine levels were kept constant. Expansion of TILs in the bioreactor system represents a labor- and cost-effective method to reach large numbers of T cells for adoptive cell transfer therapy in the clinic. CONCLUSION: The system presented herein offers an effective alternative to large-scale production of cell products for clinical use while meeting requirements of therapeutic cell quantities and qualities of current protocols for treatment of malignant melanoma

    Cell-Mediated Immunity in Autoimmune Disease

    No full text

    Emerging Economies: Muddling Through to Development

    No full text
    corecore