57 research outputs found

    Cyanobacterial lipopolysaccharides and human health – a review

    Get PDF
    Cyanobacterial lipopolysaccharide/s (LPS) are frequently cited in the cyanobacteria literature as toxins responsible for a variety of heath effects in humans, from skin rashes to gastrointestinal, respiratory and allergic reactions. The attribution of toxic properties to cyanobacterial LPS dates from the 1970s, when it was thought that lipid A, the toxic moiety of LPS, was structurally and functionally conserved across all Gram-negative bacteria. However, more recent research has shown that this is not the case, and lipid A structures are now known to be very different, expressing properties ranging from LPS agonists, through weak endotoxicity to LPS antagonists. Although cyanobacterial LPS is widely cited as a putative toxin, most of the small number of formal research reports describe cyanobacterial LPS as weakly toxic compared to LPS from the Enterobacteriaceae. We systematically reviewed the literature on cyanobacterial LPS, and also examined the much lager body of literature relating to heterotrophic bacterial LPS and the atypical lipid A structures of some photosynthetic bacteria. While the literature on the biological activity of heterotrophic bacterial LPS is overwhelmingly large and therefore difficult to review for the purposes of exclusion, we were unable to find a convincing body of evidence to suggest that heterotrophic bacterial LPS, in the absence of other virulence factors, is responsible for acute gastrointestinal, dermatological or allergic reactions via natural exposure routes in humans. There is a danger that initial speculation about cyanobacterial LPS may evolve into orthodoxy without basis in research findings. No cyanobacterial lipid A structures have been described and published to date, so a recommendation is made that cyanobacteriologists should not continue to attribute such a diverse range of clinical symptoms to cyanobacterial LPS without research confirmation

    First Investigation of the Microbiology of the Deepest Layer of Ocean Crust

    Get PDF
    We would like to thank Frederick (Rick) Colwell for input on molecular analyses in low biomass environments, Donna Blackman, Benoît Ildefonse, Adélie Delacour, and Gretchen Früh-Green for discussions regarding geological and geochemical aspects of this manuscript, and the Integrated Ocean Drilling Program Expeditions 304/305 Science Party. We would also like to thank Captain Alex Simpson and the entire crew of the JOIDES Resolution.Conceived and designed the experiments: OUM MRF SJG. Performed the experiments: OUM TN MR JDVN AM. Analyzed the data: OUM TN MR JDVN AM. Contributed reagents/materials/analysis tools: TN MR JZ MRF SJG. Wrote the paper: OUM.The gabbroic layer comprises the majority of ocean crust. Opportunities to sample this expansive crustal environment are rare because of the technological demands of deep ocean drilling; thus, gabbroic microbial communities have not yet been studied. During the Integrated Ocean Drilling Program Expeditions 304 and 305, igneous rock samples were collected from 0.45-1391.01 meters below seafloor at Hole 1309D, located on the Atlantis Massif (30 °N, 42 °W). Microbial diversity in the rocks was analyzed by denaturing gradient gel electrophoresis and sequencing (Expedition 304), and terminal restriction fragment length polymorphism, cloning and sequencing, and functional gene microarray analysis (Expedition 305). The gabbroic microbial community was relatively depauperate, consisting of a low diversity of proteobacterial lineages closely related to Bacteria from hydrocarbon-dominated environments and to known hydrocarbon degraders, and there was little evidence of Archaea. Functional gene diversity in the gabbroic samples was analyzed with a microarray for metabolic genes (“GeoChip”), producing further evidence of genomic potential for hydrocarbon degradation - genes for aerobic methane and toluene oxidation. Genes coding for anaerobic respirations, such as nitrate reduction, sulfate reduction, and metal reduction, as well as genes for carbon fixation, nitrogen fixation, and ammonium-oxidation, were also present. Our results suggest that the gabbroic layer hosts a microbial community that can degrade hydrocarbons and fix carbon and nitrogen, and has the potential to employ a diversity of non-oxygen electron acceptors. This rare glimpse of the gabbroic ecosystem provides further support for the recent finding of hydrocarbons in deep ocean gabbro from Hole 1309D. It has been hypothesized that these hydrocarbons might originate abiotically from serpentinization reactions that are occurring deep in the Earth's crust, raising the possibility that the lithic microbial community reported here might utilize carbon sources produced independently of the surface biosphere.Yeshttp://www.plosone.org/static/editorial#pee

    Extraction of Algal LIpids and their Analysis by HPLC and Mass Spectrometry

    No full text
    Algae are a promising source of biofuel but claims about their lipid content can be ambiguous because extraction methods vary and lipid quantitation often does not distinguish between particular lipid classes. Here we compared methods for the extraction of algal lipids and showed that 2-ethoxyethanol (2-EE) provides superior lipid recovery (>150–200 %) compared to other common extraction solvents such as chloroform:methanol or hexane. Extractions of wet and dry algal biomass showed that 2-EE was more effective at extracting lipids from wet rather than dried algal pellets. To analyze lipid content we used normal-phase HPLC with parallel quantitation by an evaporative light scattering detector and a mass spectrometer. Analysis of crude lipid extracts showed that all major lipid classes could be identified and quantified and revealed a surprisingly large amount of saturated hydrocarbons (HC). This HC fraction was isolated from extracts of bioreactor-grown algae and further analyzed by HPLC/MS, NMR, and GC/MS. The results showed that the sample consisted of a mixture of saturated, straight- and branched-chain HC of different chain lengths. These algal HC could represent an alternative biofuel to triacylglycerols (TAG) that could feed directly into the current petroleum infrastructure.Center for Electromechanic
    corecore