38 research outputs found
DH and JH usage in murine fetal liver mirrors that of human fetal liver
In mouse and human, the regulated development of antibody repertoire diversity during ontogeny proceeds in parallel with the development of the ability to generate antibodies to an array of specific antigens. Compared to adult, the human fetal antibody repertoire limits N addition and uses specifically positioned VDJ gene segments more frequently, including V6-1 the most DH-proximal VH, DQ52, the most JH-proximal DH, and JH2, which is DH-proximal. The murine fetal antibody repertoire also limits the incorporation of N nucleotides and uses its most DH proximal VH, VH81X, more frequently. To test whether DH and JH also follow the pattern observed in human, we used the scheme of Hardy to sort B lineage cells from BALB/c fetal and neonatal liver, RT-PCR cloned and sequenced VH7183-containing VDJCμ transcripts, and then assessed VH7183-DH-JH and complementary determining region 3 of the immunoglobulin heavy chain (CDR-H3) content in comparison to the previously studied adult BALB/c mouse repertoire. Due to the deficiency in N nucleotide addition, perinatal CDR-H3s manifested a distinct pattern of amino acid usage and predicted loop structures. As in the case of adult bone marrow, we observed a focusing of CDR-H3 length and CDR-H3 loop hydrophobicity, especially in the transition from the early to late pre-B cell stage, a developmental checkpoint associated with expression of the pre-B cell receptor. However, fetal liver usage of JH-proximal DHQ52 and DH-proximal JH2 was markedly greater than that of adult bone marrow. Thus, the early pattern of DH and JH usage in mouse feta liver mirrors that of human
The late radiotherapy normal tissue injury phenotypes of telangiectasia, fibrosis and atrophy in breast cancer patients have distinct genotype-dependent causes
The relationship between late normal tissue radiation injury phenotypes in 167 breast cancer patients treated with radiotherapy and: (i) radiotherapy dose (boost); (ii) an early acute radiation reaction and (iii) genetic background was examined. Patients were genotyped at single nucleotide polymorphisms (SNPs) in eight candidate genes. An early acute reaction to radiation and/or the inheritance of the transforming growth factor-β1 (TGFβ1 −509T) SNP contributed to the risk of fibrosis. In contrast, an additional 15 Gy electron boost and/or the inheritance of X-ray repair cross-complementing 1 (XRCC1) (R399Q) SNP contributed to the risk of telangiectasia. Although fibrosis, telangiectasia and atrophy, all contribute to late radiation injury, the data suggest that they have distinct underlying genetic and radiobiological causes. Fibrosis risk is associated with an inflammatory response (an acute reaction and/or TGFβ1), whereas telangiectasia is associated with vascular endothelial cell damage (boost and/or XRCC1). Atrophy is associated with an acute response, but the genetic predisposing factors that determine the risk of an acute response or atrophy have yet to be identified. A combined analysis of two UK breast cancer patient studies shows that 8% of patients are homozygous (TT) for the TGFβ1 (C-509T) variant allele and have a 15-fold increased risk of fibrosis following radiotherapy (95% confidence interval: 3.76–60.3; P=0.000003) compared with (CC) homozygotes
Host-Species Transferrin Receptor 1 Orthologs Are Cellular Receptors for Nonpathogenic New World Clade B Arenaviruses
The ability of a New World (NW) clade B arenavirus to enter cells using human transferrin receptor 1 (TfR1) strictly correlates with its ability to cause hemorrhagic fever. Amapari (AMAV) and Tacaribe (TCRV), two nonpathogenic NW clade B arenaviruses that do not use human TfR1, are closely related to the NW arenaviruses that cause hemorrhagic fevers. Here we show that pseudotyped viruses bearing the surface glycoprotein (GP) of AMAV or TCRV can infect cells using the TfR1 orthologs of several mammalian species, including those of their respective natural hosts, the small rodent Neacomys spinosus and the fruit bat Artibeus jamaicensis. Mutation of one residue in human TfR1 makes it a functional receptor for TCRV, and mutation of four residues makes it a functional receptor for AMAV. Our data support an in vivo role for TfR1 in the replication of most, if not all, NW clade B arenaviruses, and suggest that with modest changes in their GPs the nonpathogenic arenaviruses could use human TfR1 and emerge as human pathogens
HemaMax™, a Recombinant Human Interleukin-12, Is a Potent Mitigator of Acute Radiation Injury in Mice and Non-Human Primates
HemaMax, a recombinant human interleukin-12 (IL-12), is under development to address an unmet medical need for effective treatments against acute radiation syndrome due to radiological terrorism or accident when administered at least 24 hours after radiation exposure. This study investigated pharmacokinetics, pharmacodynamics, and efficacy of m-HemaMax (recombinant murine IL-12), and HemaMax to increase survival after total body irradiation (TBI) in mice and rhesus monkeys, respectively, with no supportive care. In mice, m-HemaMax at an optimal 20 ng/mouse dose significantly increased percent survival and survival time when administered 24 hours after TBI between 8–9 Gy (p<0.05 Pearson's chi-square test). This survival benefit was accompanied by increases in plasma interferon-γ (IFN-γ) and erythropoietin levels, recovery of femoral bone hematopoiesis characterized with the presence of IL-12 receptor β2 subunit–expressing myeloid progenitors, megakaryocytes, and osteoblasts. Mitigation of jejunal radiation damage was also examined. At allometrically equivalent doses, HemaMax showed similar pharmacokinetics in rhesus monkeys compared to m-HemaMax in mice, but more robustly increased plasma IFN-γ levels. HemaMax also increased plasma erythropoietin, IL-15, IL-18, and neopterin levels. At non-human primate doses pharmacologically equivalent to murine doses, HemaMax (100 ng/Kg and 250 ng/Kg) administered at 24 hours after TBI (6.7 Gy/LD50/30) significantly increased percent survival of HemaMax groups compared to vehicle (p<0.05 Pearson's chi-square test). This survival benefit was accompanied by a significantly higher leukocyte (neutrophils and lymphocytes), thrombocyte, and reticulocyte counts during nadir (days 12–14) and significantly less weight loss at day 12 compared to vehicle. These findings indicate successful interspecies dose conversion and provide proof of concept that HemaMax increases survival in irradiated rhesus monkeys by promoting hematopoiesis and recovery of immune functions and possibly gastrointestinal functions, likely through a network of interactions involving dendritic cells, osteoblasts, and soluble factors such as IL-12, IFN-γ, and cytoprotectant erythropoietin
End-stage kidney disease due to haemolytic uraemic syndrome - outcomes in 241 consecutive ANZDATA Registry cases
Extent: 11p.Background: The aim of this study was to investigate the characteristics and outcomes of patients receiving renal replacement therapy for end-stage kidney disease (ESKD) secondary to haemolytic uraemic syndrome (HUS). Methods: The study included all patients with ESKD who commenced renal replacement therapy in Australia and New Zealand between 15/5/1963 and 31/12/2010, using data from the ANZDATA Registry. HUS ESKD patients were compared with matched controls with an alternative primary renal disease using propensity scores based on age, gender and treatment era. Results: Of the 58422 patients included in the study, 241 (0.4%) had ESKD secondary to HUS. HUS ESKD was independently associated with younger age, female gender and European race. Compared with matched controls, HUS ESKD was not associated with mortality on renal replacement therapy (adjusted hazard ratio [HR] 1.14, 95% CI 0.87-1.50, p = 0.34) or dialysis (HR 1.34, 95% CI 0.93-1.93, p = 0.12), but did independently predict recovery of renal function (HR 54.01, 95% CI 1.45-11.1, p = 0.008). 130 (54%) HUS patients received 166 renal allografts. Overall renal allograft survival rates were significantly lower for patients with HUS ESKD at 1 year (73% vs 91%), 5 years (62% vs 85%) and 10 years (49% vs 73%). HUS ESKD was an independent predictor of renal allograft failure (HR 2.59, 95% CI 1.70-3.95, p < 0.001). Sixteen (12%) HUS patients experienced failure of 22 renal allografts due to recurrent HUS. HUS ESKD was not independently associated with the risk of death following renal transplantation (HR 0.92, 95% CI 0.35-2.44, p = 0.87). Conclusions: HUS is an uncommon cause of ESKD, which is associated with comparable patient survival on dialysis, an increased probability of renal function recovery, comparable patient survival post-renal transplant and a heightened risk of renal transplant graft failure compared with matched ESKD controls.Wen Tang, Janaki Mohandas, Stephen P McDonald, Carmel M Hawley, Sunil V Badve, Neil Boudville, Fiona G Brown, Philip A Clayton, Kathryn J Wiggins, Kym M Bannister, Scott B Campbell and David W Johnso
