7 research outputs found

    Fluorescence in-situ hybridisation on biopsies from clam ileocystoplasties and on a clam cancer

    Get PDF
    The incidence of carcinoma following an enterocystoplasty increases with time and is a major concern after such procedures. The aim of this study was to investigate genetic instability (in the form of numerical chromosomal aberrations) at the enterovesical anastomosis in patients who had undergone a clam ileocystoplasty using fluorescent in-situ hybridisation (FISH). Fluorescent in-situ hybridisation was performed on touch preparation samples prepared from fresh endoscopic biopsies obtained from the enterovesical anastomosis and native bladder remnant (control specimens) of 15 patients who had undergone a clam ileocystoplasty. Fluorescent in-situ hybridisation was also performed on one squamous cell cancer specimen. Significant aneusomic changes were found at the enterovesical anastomosis in all 15 patients. Alterations in chromosome 18 copy number were the most frequent abnormal finding (trisomy 18, n=8; monosomy 18, n=7). Nine patients were monosomic for chromosome 9. Isolated monosomy 8 and trisomy 8 were each found in one patient. The control specimens were all normal. An unusually high incidence of polysomic cells was found in the clam tumour specimen, reflecting the aggressive nature of this cancer. Chromosomal numerical abnormalities occur at the enterovesical anastomosis following a clam ileocystoplasty and chromosome 18 appears to be a particularly good marker of genetic instability. The results of this study indicate that morphologically normal tissue obtained from the enterovesical anastomosis displays evidence of chromosomal instability that may predispose to tumour formation. However, further prospective, blinded, longitudinal studies are required to establish whether predetermined FISH signal patterns in enterocystoplasty cells in urine or obtained by biopsy predict the presence or absence of tumour

    Anaerobic Carbon Monoxide Dehydrogenase Diversity in the Homoacetogenic Hindgut Microbial Communities of Lower Termites and the Wood Roach

    Get PDF
    Anaerobic carbon monoxide dehydrogenase (CODH) is a key enzyme in the Wood-Ljungdahl (acetyl-CoA) pathway for acetogenesis performed by homoacetogenic bacteria. Acetate generated by gut bacteria via the acetyl-CoA pathway provides considerable nutrition to wood-feeding dictyopteran insects making CODH important to the obligate mutualism occurring between termites and their hindgut microbiota. To investigate CODH diversity in insect gut communities, we developed the first degenerate primers designed to amplify cooS genes, which encode the catalytic (β) subunit of anaerobic CODH enzyme complexes. These primers target over 68 million combinations of potential forward and reverse cooS primer-binding sequences. We used the primers to identify cooS genes in bacterial isolates from the hindgut of a phylogenetically lower termite and to sample cooS diversity present in a variety of insect hindgut microbial communities including those of three phylogenetically-lower termites, Zootermopsis nevadensis, Reticulitermes hesperus, and Incisitermes minor, a wood-feeding cockroach, Cryptocercus punctulatus, and an omnivorous cockroach, Periplaneta americana. In total, we sequenced and analyzed 151 different cooS genes. These genes encode proteins that group within one of three highly divergent CODH phylogenetic clades. Each insect gut community contained CODH variants from all three of these clades. The patterns of CODH diversity in these communities likely reflect differences in enzyme or physiological function, and suggest that a diversity of microbial species participate in homoacetogenesis in these communities

    Glucose-6-Phosphate Dehydrogenase Protects Escherichia coli from Tellurite-Mediated Oxidative Stress

    Get PDF
    The tellurium oxyanion tellurite induces oxidative stress in most microorganisms. In Escherichia coli, tellurite exposure results in high levels of oxidized proteins and membrane lipid peroxides, inactivation of oxidation-sensitive enzymes and reduced glutathione content. In this work, we show that tellurite-exposed E. coli exhibits transcriptional activation of the zwf gene, encoding glucose 6-phosphate dehydrogenase (G6PDH), which in turn results in augmented synthesis of reduced nicotinamide adenine dinucleotide phosphate (NADPH). Increased zwf transcription under tellurite stress results mainly from reactive oxygen species (ROS) generation and not from a depletion of cellular glutathione. In addition, the observed increase of G6PDH activity was paralleled by accumulation of glucose-6-phosphate (G6P), suggesting a metabolic flux shift toward the pentose phosphate shunt. Upon zwf overexpression, bacterial cells also show increased levels of antioxidant molecules (NADPH, GSH), better-protected oxidation-sensitive enzymes and decreased amounts of oxidized proteins and membrane lipids. These results suggest that by increasing NADPH content, G6PDH plays an important role in E. coli survival under tellurite stress
    corecore