15 research outputs found

    Senescence and Sexual Selection in a Pelagic Copepod

    Get PDF
    The ecology of senescence in marine zooplankton is not well known. Here we demonstrate senescence effects in the marine copepod Oithona davisae and show how sex and sexual selection accelerate the rate of ageing in the males. We show that adult mortality increases and male mating capacity and female fertility decrease with age and that the deterioration in reproductive performance is faster for males. Males have a limited mating capacity because they can fertilize < 2 females day−1 and their reproductive life span is 10 days on average. High female encounter rates in nature (>10 day−1), a rapid age-dependent decline in female fertility, and a high mortality cost of mating in males are conducive to the development of male choosiness. In our experiments males in fact show a preference for mating with young females that are 3 times more fertile than 30-day old females. We argue that this may lead to severe male-male competition for young virgin females and a trade-off that favours investment in mate finding over maintenance. In nature, mate finding leads to a further elevated mortality of males, because these swim rapidly in their search for attractive partners, further relaxing fitness benefits of maintenance investments. We show that females have a short reproductive period compared to their average longevity but virgin females stay fertile for most of their life. We interpret this as an adaptation to a shortage of males, because a long life increases the chance of fertilization and/or of finding a high quality partner. The very long post reproductive life that many females experience is thus a secondary effect of such an adaptation

    Feeding currents facilitate a mixotrophic way of life

    No full text
    Mixotrophy is common, if not dominant, among eukaryotic flagellates, and these organisms have to both acquire inorganic nutrients and capture particulate food. Diffusion limitation favors small cell size for nutrient acquisition, whereas large cell size facilitates prey interception because of viscosity, and hence intermediately sized mixotrophic dinoflagellates are simultaneously constrained by diffusion and viscosity. Advection may help relax both constraints. We use high-speed video microscopy to describe prey interception and capture, and micro particle image velocimetry (micro-PIV) to quantify the flow fields produced by free-swimming dinoflagellates. We provide the first complete flow fields of free-swimming interception feeders, and demonstrate the use of feeding currents. These are directed toward the prey capture area, the position varying between the seven dinoflagellate species studied, and we argue that this efficiently allows the grazer to approach small-sized prey despite viscosity. Measured flow fields predict the magnitude of observed clearance rates. The fluid deformation created by swimming dinoflagellates may be detected by evasive prey, but the magnitude of flow deformation in the feeding current varies widely between species and depends on the position of the transverse flagellum. We also use the near-cell flow fields to calculate nutrient transport to swimming cells and find that feeding currents may enhance nutrient uptake by ≈75% compared with that by diffusion alone. We argue that all phagotrophic microorganisms must have developed adaptations to counter viscosity in order to allow prey interception, and conclude that the flow fields created by the beating flagella in dinoflagellates are key to the success of these mixotrophic organisms

    Letting go: bacterial genome reduction solves the dilemma of adapting to predation mortality in a substrate-restricted environment

    Full text link
    Resource limitation and predation mortality are major determinants of microbial population dynamics, and optimization for either aspect is considered to imply a trade-off with respect to the other. Adaptation to these selective factors may, moreover, lead to disadvantages at rich growth conditions. We present an example of a concomitant evolutionary optimization to both, substrate limitation and predation in an aggregate-forming freshwater bacterial isolate, and we elucidate an underlying genomic mechanism. Bacteria were propagated in serial batch culture in a nutrient-restricted environment either with or without a bacterivorous flagellate. Strains isolated after 26 growth cycles of the predator–prey co-cultures formed as much total biomass as the ancestor at ancestral growth conditions, albeit largely reallocated to cell aggregates. A ~273 kbp genome fragment was lost in three strains that had independently evolved with predators. These strains had significantly higher growth yield on substrate-restricted media than others that were isolated from the same treatment before the excision event. Under predation pressure, the isolates with the deletion outcompeted both, the ancestor and the strains evolved without predators even at rich growth conditions. At the same time, genome reduction led to a growth disadvantage in the presence of benzoate due to the loss of the respective degradation pathway, suggesting that niche constriction might be the price for the bidirectional optimization
    corecore