5 research outputs found
Defects in mismatch repair occur after APC mutations in the pathogenesis of sporadic colorectal tumours.
The roles of the intrinsic mutation rate and genomic instability in tumorigenesis are currently controversial. In most colorectal tumours, it is generally supposed that the first mutations occur at the adenomatous polyposis coli (APC) locus; APC mutations are thought to provide cells with a selective advantage but have no known effect on the mutation rate. It has also been suggested that genomic instability is the initiating event in colorectal tumorigenesis and, if this is true, mutations of DNA mismatch repair (MMR) genes (or at similar loci) are the most likely candidates. If defective MMR precedes APC mutations, the APC mutations of colon tumours with defective MMR and hence replication errors (RER+) should differ from those of RER- tumours, in at least three specific ways: (1) a higher frequency of allele loss at APC in RER- tumours; (2) more frameshift than nonsense mutations in RER+ tumours; and (3) APC mutations in simple repeat sequences [(N)n, (N1N2)n, or (N1N2N3)n] in RER+ tumours. We found no evidence that sporadic RER+ and RER- colon cancers (including cell lines) differ in any of these three ways. Although it remains possible that MMR is abnormal in tumours from HNPCC families before APC mutations occur, it is likely that in sporadic colon tumours, APC mutations, rather than genomic instability, are the initiating events in tumorigenesis
Genomic instability--the engine of tumorigenesis?
Human cancers harbour numerous mutations and it has been proposed that these result from some form of inherent genomic instability. Some cancers have proven genomic instability or features that are indicative of this. Inherited cancer syndromes exist that are caused by deficient DNA repair or chromosomal integrity. By contrast, theoretical analysis and experimental data from sporadic colorectal tumours provide little general evidence of genomic instability in early lesions. These apparently conflicting data raise the question of whether or not genomic instability is necessary for driving tumour growth, and whether or not it is the usual initiating event in tumorigenesis