698 research outputs found

    An Improved Initialization Procedure for the Density-Matrix Renormalization Group

    Full text link
    We propose an initialization procedure for the density-matrix renormalization group (DMRG): {\it the recursive sweep method}. In a conventional DMRG calculation, the infinite-algorithm, where two new sites are added to the system at each step, has been used to reach the target system size. We then need to obtain the ground state for a different system size for every site addition, so 1) it is difficult to supply a good initial vector for the numerical diagonalization for the ground state, and 2) when the system reduced to a 1D system consists of an array of nonequivalent sites as in ladders or Hubbard-Holstein model, special care has to be taken. Our procedure, which we call the {\it recursive sweep method}, provides a solution to these problems and in fact provides a faster algorithm for the Hubbard model as well as more complicated ones such as the Hubbard-Holstein model.Comment: 4 pages, 4 figures, submitted to JPS

    Ground states and dynamics of population-imbalanced Fermi condensates in one dimension

    Full text link
    By using the numerically exact density-matrix renormalization group (DMRG) approach, we investigate the ground states of harmonically trapped one-dimensional (1D) fermions with population imbalance and find that the Larkin-Ovchinnikov (LO) state, which is a condensed state of fermion pairs with nonzero center-of-mass momentum, is realized for a wide range of parameters. The phase diagram comprising the two phases of i) an LO state at the trap center and a balanced condensate at the periphery and ii) an LO state at the trap center and a pure majority component at the periphery, is obtained. The reduced two-body density matrix indicates that most of the minority atoms contribute to the LO-type quasi-condensate. With the time-dependent DMRG, we also investigate the real-time dynamics of a system of 1D fermions in response to a spin-flip excitation.Comment: 20 pages, 15 figures, accepted for publication in New Journal of Physic

    Dopant-dependent impact of Mn-site doping on the critical-state manganites: R0.6Sr0.4MnO3 (R=La, Nd, Sm, and Gd)

    Full text link
    Versatile features of impurity doping effects on perovskite manganites, R0.6R_{0.6}Sr0.4_{0.4}MnO3_{3}, have been investigated with varying the doing species as well as the RR-dependent one-electron bandwidth. In ferromagnetic-metallic manganites (RR=La, Nd, and Sm), a few percent of Fe substitution dramatically decreases the ferromagnetic transition temperature, leading to a spin glass insulating state with short-range charge-orbital correlation. For each RR species, the phase diagram as a function of Fe concentration is closely similar to that for R0.6R_{0.6}Sr0.4_{0.4}MnO3_{3} obtained by decreasing the ionic radius of RR site, indicating that Fe doping in the phase-competing region weakens the ferromagnetic double-exchange interaction, relatively to the charge-orbital ordering instability. We have also found a contrastive impact of Cr (or Ru) doping on a spin-glass insulating manganite (RR=Gd). There, the impurity-induced ferromagnetic magnetization is observed at low temperatures as a consequence of the collapse of the inherent short-range charge-orbital ordering, while Fe doping plays only a minor role. The observed opposite nature of impurity doping may be attributed to the difference in magnitude of the antiferromagnetic interaction between the doped ions.Comment: 7 pages, 6 figure

    Influence of s-d interfacial scattering on the magnetoresistance of magnetic tunnel junctions

    Full text link
    We propose the two-band s-d model to describe theoretically a diffuse regime of the spin-dependent electron transport in magnetic tunnel junctions (MTJ's) of the form F/O/F where F's are 3d transition metal ferromagnetic layers and O is the insulating spacer. We aim to explain the strong interface sensitivity of the tunneling properties of MTJ's and investigate the influence of electron scattering at the nonideal interfaces on the degradation of the TMR magnitude. The generalized Kubo formalism and the Green's functions method were used to calculate the conductance of the system. The vertex corrections to the conductivity were found with the use of "ladder" approximation combined with the coherent-potential approximation (CPA) that allowed to consider the case of strong electron scattering. It is shown that the Ward identity is satisfied in the framework of this approximation that provides the necessary condition for a conservation of a tunneling current. Based on the known results of ab-initio calculations of the TMR for ballistic junctions, we assume that exchange split quasi-free s-like electrons with the density of states being greater for the majority spin sub-band give the main contribution to the TMR effect. We show that, due to interfacial inter-band scattering, the TMR can be substantially reduced even down to zero value. This is related to the fact that delocalized quasi-free electrons can scatter into the strongly localized d sub-band with the density of states at the Fermi energy being larger for minority spins compared to majority spins. It is also shown that spin-flip electron scattering on the surface magnons within the interface leads to a further decrease of the TMR at finite temperature.Comment: REVTeX4, 20 pages, 9 figures, 1 table, submitted to Phys.Rev.B; In Version 2 the text is substantially improved, the main results and conclusions left the sam

    Elastic Charge Form Factors of π\pi and K Mesons

    Full text link
    The elastic charge form factors of the charged π\pi and KK mesons are calculated in modified impulse approximation using instant form of relativistic Hamiltonian dynamics. Our approach gives pion and kaon electromagnetic form factors in the large range of momentum transfer. The results are in good agreement with the available data. Relativistic effects are large at all values of momentum transfers. The pion and kaon form factors at large Q2Q^2 depend strongly on the choice of model. The experiments on pion form factor at large momentum transfer planned at CEBAF will choose between such models. In the case of kaon such a choosing may be performed only if supplemented by accurate measurements of kaon MSR.Comment: 9 pages, LaTeX, 2 uuencoded PostScript figure
    corecore