7 research outputs found
Prognostic Factors in Epithelioid Hemangioendothelioma: Analysis of a Nationwide Molecularly/Immunohistochemically Confirmed Cohort of 57 Cases
Epithelioid hemangioendothelioma (EHE) is an extremely rare vascular sarcoma with variable aggressive clinical behavior. In this retrospective study, we aimed to investigate prognostic factors based on clinicopathologic findings in a molecularly/immunohistochemically confirmed nationwide multicenter cohort of 57 EHE cases. Patients had unifocal disease (n = 29), multifocal disease (n = 5), lymph node metastasis (n = 8) and/or distant metastasis (n = 15) at the time of diagnosis. The overall survival rate was 71.4% at 1 year and 50.7% at 5 years. Survival did not correlate with sex, age or histopathological parameters. No survival differences were observed between multifocal and metastatic disease, suggesting that multifocality represents early metastases and treatment options are limited in comparison to unifocal disease. In unifocal tumors, survival could be predicted using the risk stratification model of Shibayama et al., dividing the cases into low- (n = 4), intermediate- (n = 15) and high- (n = 3) risk groups. No clinical or histopathological parameters were associated with progressive unifocal disease course. Lymph node metastases at the time of diagnosis occurred in 14.0% of the cases and were mainly associated with tumor localization in the head and neck area, proposing lymph node dissection. In conclusion, our results demonstrate the aggressive behavior of EHE, emphasize the prognostic value of a previously described risk stratification model and may provide new insights regarding tumor focality, therapeutic strategies and prognosis
Whole-genome sequencing reveals host factors underlying critical COVID-19
Altres ajuts: Department of Health and Social Care (DHSC); Illumina; LifeArc; Medical Research Council (MRC); UKRI; Sepsis Research (the Fiona Elizabeth Agnew Trust); the Intensive Care Society, Wellcome Trust Senior Research Fellowship (223164/Z/21/Z); BBSRC Institute Program Support Grant to the Roslin Institute (BBS/E/D/20002172, BBS/E/D/10002070, BBS/E/D/30002275); UKRI grants (MC_PC_20004, MC_PC_19025, MC_PC_1905, MRNO2995X/1); UK Research and Innovation (MC_PC_20029); the Wellcome PhD training fellowship for clinicians (204979/Z/16/Z); the Edinburgh Clinical Academic Track (ECAT) programme; the National Institute for Health Research, the Wellcome Trust; the MRC; Cancer Research UK; the DHSC; NHS England; the Smilow family; the National Center for Advancing Translational Sciences of the National Institutes of Health (CTSA award number UL1TR001878); the Perelman School of Medicine at the University of Pennsylvania; National Institute on Aging (NIA U01AG009740); the National Institute on Aging (RC2 AG036495, RC4 AG039029); the Common Fund of the Office of the Director of the National Institutes of Health; NCI; NHGRI; NHLBI; NIDA; NIMH; NINDS.Critical COVID-19 is caused by immune-mediated inflammatory lung injury. Host genetic variation influences the development of illness requiring critical care or hospitalization after infection with SARS-CoV-2. The GenOMICC (Genetics of Mortality in Critical Care) study enables the comparison of genomes from individuals who are critically ill with those of population controls to find underlying disease mechanisms. Here we use whole-genome sequencing in 7,491 critically ill individuals compared with 48,400 controls to discover and replicate 23 independent variants that significantly predispose to critical COVID-19. We identify 16 new independent associations, including variants within genes that are involved in interferon signalling (IL10RB and PLSCR1), leucocyte differentiation (BCL11A) and blood-type antigen secretor status (FUT2). Using transcriptome-wide association and colocalization to infer the effect of gene expression on disease severity, we find evidence that implicates multiple genes-including reduced expression of a membrane flippase (ATP11A), and increased expression of a mucin (MUC1)-in critical disease. Mendelian randomization provides evidence in support of causal roles for myeloid cell adhesion molecules (SELE, ICAM5 and CD209) and the coagulation factor F8, all of which are potentially druggable targets. Our results are broadly consistent with a multi-component model of COVID-19 pathophysiology, in which at least two distinct mechanisms can predispose to life-threatening disease: failure to control viral replication; or an enhanced tendency towards pulmonary inflammation and intravascular coagulation. We show that comparison between cases of critical illness and population controls is highly efficient for the detection of therapeutically relevant mechanisms of disease