2,787 research outputs found
Particle acceleration in sub-cycle optical cells
A single laser pulse with spot size smaller than half its wavelength () can provide a net energy gain to ultra-relativistic particles. In
this paper, we discuss the properties of an optical cell consisting of
sub-cycle pulses that propagate in the direction perpendicular to the electron
motion. We show that the energy gain produced by the cell is proportional to
and it is sizable even for pulses.Comment: 13 pages, 7 figures. Version to appear in PRSTA
Neutrino oscillation experiments
In this paper, we give a short overview of neutrino oscillation experiments with emphasis on current European programmes of interest for INFN and on mid-term perspectives. In particular, we discuss the results that strengthen the standard three-family interpretation of leptonic mixing and the tension originating from the persistent LSND-Miniboone anomaly together with updated reactor data
An infrared origin of leptonic mixing and its test at DeepCore
Fermion mixing is generally believed to be a low-energy manifestation of an
underlying theory whose energy scale is much larger than the electroweak scale.
In this paper we investigate the possibility that the parameters describing
lepton mixing actually arise from the low-energy behavior of the neutrino
interacting fields. In particular, we conjecture that the measured value of the
mixing angles for a given process depends on the number of unobservable flavor
states at the energy of the process. We provide a covariant implementation of
such conjecture, draw its consequences in a two neutrino family approximation
and compare these findings with current experimental data. Finally we show that
this infrared origin of mixing will be manifest at the Ice Cube DeepCore array,
which measures atmospheric oscillations at energies much larger than the tau
lepton mass; it will hence be experimentally tested in a short time scale.Comment: 14 pages, 1 figure; version to appear in Int.J.Mod.Phys.
Three-flavour oscillations with accelerator neutrino beams
The three-flavor neutrino oscillation paradigm is well established in
particle physics thanks to the crucial contribution of accelerator neutrino
beam experiments. In this paper we review the most important contributions of
these experiments to the physics of massive neutrinos after the discovery of
and future perspectives in such a lively field of research.
Special emphasis is given to the technical challenges of high power beams and
the oscillation results of T2K, OPERA, ICARUS and NOA. We discuss in
details the role of accelerator neutrino experiments in the precision era of
neutrino physics in view of DUNE and Hyper-Kamiokande, the programme of
systematic uncertainty reduction and the development of new beam facilities.Comment: 31 pages, 12 fugures. To appear in Univers
Experimental prospects to observe the g − 2 muon anomaly in the electron sector
The long-standing difference between the experimental measurement and the standard model prediction for the muon’s anomalous magnetic moment, aμ = (gμ − 2)/2, can be due to new particles flowing in loop contributions: such
discrepancy might thus signal the presence of new physics at the TeV scale. The vast majority of models explaining the muon discrepancy in terms of new physics (NP) predict sizable effects in ae = (ge−2)/2, too. We discuss the experimental prospects to reach sub-ppb precision on ae and test the NP origin of the muon anomaly in its electron counterpart
Engaging Your Faculty
Career services professionals can utilize faculty as an additional resource when working to coach law students and alumni to successful careers. Working across departmental “silos” can help improve student career outcomes and engagement by tapping into additional professional contact networks. Developing relationships with tenure-track, contract and adjunct faculty, inviting them to programming, asking them to participate on committees and keeping faculty apprised of student employment, allow for a holistic and collaborate approach to advising students
- …