54 research outputs found
Modelling of rocking and sliding effects in the seismic analysis of a free-standing column
A study on the seismic response of a free-standing marble column, including rocking and sliding effects, is presented in this paper. The rocking-sliding model implemented for the development of the analyses corresponds to the basic theoretical and numerical simulation of the dynamic phenomenon. The assessment procedure adopted for the application of the model to the non-linear dynamic incremental time-history investigation is checked by comparison with simplified rigid body-based analytical predictions of the rocking-onset response acceleration and the overturning critical velocity. The results show a high seismic vulnerability of the column, as identified by severe damage at the basic design earthquake level, and an overturning-related near-collapse response at the maximum considered earthquake level
Recommended from our members
Spatially-resolved 1H NMR relaxation-exchange measurements in heterogeneous media.
In the last decades, the 1H NMR T2-T2 relaxation-exchange (REXSY) technique has become an essential tool for the molecular investigation of simple and complex fluids in heterogeneous porous solids and soft matter, where the mixing-time-evolution of cross-correlated T2-T2 peaks enables a quantitative study of diffusive exchange kinetics in multi-component systems. Here, we present a spatially-resolved implementation of the T2-T2 correlation technique, named z-T2-T2, based on one-dimensional spatial mapping along z using a rapid frequency-encode imaging scheme. Compared to other phase-encoding methods, the adopted MRI technique has two distinct advantages: (i) is has the same experimental duration of a standard (bulk) T2-T2 measurement, and (ii) it provides a high spatial resolution. The proposed z-T2-T2 method is first validated against bulk T2-T2 measurements on homogeneous phantom consisting of cyclohexane uniformly imbibed in finely-sized α-Al2O3 particles at a spatial resolution of 0.47 mm; thereafter, its performance is demonstrated, on a layered bed of multi-sized α-Al2O3 particles, for revealing spatially-dependent molecular exchange kinetics properties of intra- and inter-particle cyclohexane as a function of particle size. It is found that localised z-T2-T2 spectra provide well resolved cross peaks whilst such resolution is lost in standard bulk T2-T2 data. Future prospective applications of the method lie, in particular, in the local characterisation of mass transport phenomena in multi-component porous media, such as rock cores and heterogeneous catalysts
In vitro 1H MT and CEST MRI mapping of gastro-intestinal milk protein breakdown
Protein digestion is commonly studied using in vitro models. Validating these models with more complex in vivo observations remains challenging, in particular due to the need for non-invasive techniques. Here, we explore Magnetization Transfer (MT) and Chemical Exchange Saturation Transfer (CEST) MRI for non-invasive monitoring of protein solubilization and hydrolysis during static in vitro digestion using skim milk (SM). We measured CEST spectra of unheated and heated SM during gastric digestion, from which the relative amount of soluble proteins/peptides was estimated by calculating the asymmetric MT ratio (MTRasym). We also obtained semi-solid volume fractions (vss), MT ratio (MTR) and MTRasym from the same measurement, within 1.3 min. The MTRasym area increased with gastric digestion, due to solubilization of the initially-formed coagulum, yielding a mean difference of 20 ± 7% between unheated and heated SM (p < 0.005). The vss and MTR decreased during gastric digestion and can be used to monitor changes in the coagulum, but not for assessment of soluble proteins/peptides. The MTRasym increased for heated SM during gastro-intestinal digestion, proving sensitive to protein solubilization and hydrolysis, and is suitable for monitoring protein hydrolysis at later digestion stages. Future steps will include similar MT and CEST studies under dynamic conditions
A chemical survey of exoplanets with ARIEL
Thousands of exoplanets have now been discovered with a huge range of masses, sizes and orbits: from rocky Earth-like planets to large gas giants grazing the surface of their host star. However, the essential nature of these exoplanets remains largely mysterious: there is no known, discernible pattern linking the presence, size, or orbital parameters of a planet to the nature of its parent star. We have little idea whether the chemistry of a planet is linked to its formation environment, or whether the type of host star drives the physics and chemistry of the planet’s birth, and evolution. ARIEL was conceived to observe a large number (~1000) of transiting planets for statistical understanding, including gas giants, Neptunes, super-Earths and Earth-size planets around a range of host star types using transit spectroscopy in the 1.25–7.8 μm spectral range and multiple narrow-band photometry in the optical. ARIEL will focus on warm and hot planets to take advantage of their well-mixed atmospheres which should show minimal condensation and sequestration of high-Z materials compared to their colder Solar System siblings. Said warm and hot atmospheres are expected to be more representative of the planetary bulk composition. Observations of these warm/hot exoplanets, and in particular of their elemental composition (especially C, O, N, S, Si), will allow the understanding of the early stages of planetary and atmospheric formation during the nebular phase and the following few million years. ARIEL will thus provide a representative picture of the chemical nature of the exoplanets and relate this directly to the type and chemical environment of the host star. ARIEL is designed as a dedicated survey mission for combined-light spectroscopy, capable of observing a large and well-defined planet sample within its 4-year mission lifetime. Transit, eclipse and phase-curve spectroscopy methods, whereby the signal from the star and planet are differentiated using knowledge of the planetary ephemerides, allow us to measure atmospheric signals from the planet at levels of 10–100 part per million (ppm) relative to the star and, given the bright nature of targets, also allows more sophisticated techniques, such as eclipse mapping, to give a deeper insight into the nature of the atmosphere. These types of observations require a stable payload and satellite platform with broad, instantaneous wavelength coverage to detect many molecular species, probe the thermal structure, identify clouds and monitor the stellar activity. The wavelength range proposed covers all the expected major atmospheric gases from e.g. H2O, CO2, CH4 NH3, HCN, H2S through to the more exotic metallic compounds, such as TiO, VO, and condensed species. Simulations of ARIEL performance in conducting exoplanet surveys have been performed – using conservative estimates of mission performance and a full model of all significant noise sources in the measurement – using a list of potential ARIEL targets that incorporates the latest available exoplanet statistics. The conclusion at the end of the Phase A study, is that ARIEL – in line with the stated mission objectives – will be able to observe about 1000 exoplanets depending on the details of the adopted survey strategy, thus confirming the feasibility of the main science objectives.Peer reviewedFinal Published versio
Enabling planetary science across light-years. Ariel Definition Study Report
Ariel, the Atmospheric Remote-sensing Infrared Exoplanet Large-survey, was adopted as the fourth medium-class mission in ESA's Cosmic Vision programme to be launched in 2029. During its 4-year mission, Ariel will study what exoplanets are made of, how they formed and how they evolve, by surveying a diverse sample of about 1000 extrasolar planets, simultaneously in visible and infrared wavelengths. It is the first mission dedicated to measuring the chemical composition and thermal structures of hundreds of transiting exoplanets, enabling planetary science far beyond the boundaries of the Solar System. The payload consists of an off-axis Cassegrain telescope (primary mirror 1100 mm x 730 mm ellipse) and two separate instruments (FGS and AIRS) covering simultaneously 0.5-7.8 micron spectral range. The satellite is best placed into an L2 orbit to maximise the thermal stability and the field of regard. The payload module is passively cooled via a series of V-Groove radiators; the detectors for the AIRS are the only items that require active cooling via an active Ne JT cooler. The Ariel payload is developed by a consortium of more than 50 institutes from 16 ESA countries, which include the UK, France, Italy, Belgium, Poland, Spain, Austria, Denmark, Ireland, Portugal, Czech Republic, Hungary, the Netherlands, Sweden, Norway, Estonia, and a NASA contribution
Chemical Feedback in Templated Reaction-Assembly Networks
Chemical feedback between building block synthesis and their subsequent supramolecular self-assembly into nanostructures has profound effects on assembly pathways. Nature harnesses feedback in reaction-assembly networks in a variety of scenarios including virion formation and protein folding. Also in nanomaterial synthesis, reaction-assembly networks have emerged as a promising control strategy to regulate assembly processes. Yet, how chemical feedback affects the fundamental pathways of structure formation remains unclear. Here, we unravel the pathways of a templated reaction-assembly network that couples a covalent polymerization to an electrostatic coassembly process. We show how the supramolecular staging of building blocks at a macromolecular template can accelerate the polymerization reaction and prevent the formation of kinetically trapped structures inherent to the process in the absence of feedback. Finally, we establish a predictive kinetic reaction model that quantitatively describes the pathways underlying these reaction-assembly networks. Our results shed light on the fundamental mechanisms by which chemical feedback can steer self-assembly reactions and can be used to rationally design new nanostructures.</p
Wood microstructure explored by anisotropic 1H NMR line broadening : Experiments and numerical simulations
The cellular structure of wood, which is highly anisotropic along its main growth directions, is responsible for the observed anisotropy in its physical and mechanical properties that depend in a complex manner on the moisture content. Here, we demonstrate that the 1H NMR spectra of wood from Norway spruce exhibit a strong and characteristic dependence on the direction of the sample relative to the applied magnetic field. By comparing spectra recorded at different magnetic-field strengths, we show that this variation is caused by the magnetic-field distribution created by the anisotropic and inhomogeneous distribution of matter and thereby magnetic susceptibility. On the basis of the observations that (i) the recorded spectral peak predominantly arises from translationally mobile water molecules and (ii) the spectral broadening is large if the long axis of the wood tracheid cells is perpendicular to the magnetic field, we set out to test the hypothesis that it is the susceptibility variation on the tracheid length scale that is responsible for the observed spectral features. To verify this, we numerically calculate in a discrete grid approximation the NMR line shapes obtained in realistic tracheid models, and we find that the calculated NMR line shapes are in good agreement with the corresponding experimental ones. We envisage the application of these findings for revealing the inhomogeneous distribution of water and its molecular properties in wood and wood-based materials at varying degrees of humidity
Electron Spin Polarization Transfer to ortho-H-2 by Interaction of para-H-2 with Paramagnetic Species: A Key to a Novel para -> ortho Conversion Mechanism
International audienceWe report that at ambient temperature and with 100% enriched para-hydrogen (p-H-2) dissolved in organic solvents, paramagnetic spin catalysis of para -> ortho hydrogen conversion is accompanied at the onset by a negative ortho-hydrogen (o-H-2) proton NMR signal. This novel finding indicates an electron spin polarization transfer, and we show here that this can only occur if the H-2 molecule is dissociated upon its transient adsorption by the paramagnetic catalyst. Following desorption, o-H-2 is created until the thermodynamic equilibrium is reached. A simple theory confirms that in the presence of a static magnetic field, the hyperfine coupling between unpaired electrons and nuclear spins is responsible for the observed polarization transfer. Owing to the negative electron gyromagnetic ratio, this explains the experimental results and ascertains an as yet unexplored mechanism for para -> ortho conversion. Finally, we show that the recovery of o-H-2 magnetization toward equilibrium can be simply modeled, leading to the para -> ortho conversion rate
Noninvasive monitoring of moisture uptake in Ca(NO3)2-polluted calcareous stones by1H-NMR relaxometry
NMR transverse relaxation time (T2) distribution of 1H nuclei of water has been used tomonitor the moisture condensation kinetics in Ca(NO3)2·4H2O-polluted Lecce stone, a calcareous stone with highly regular porous structure often utilized as basic material in Baroque buildings. Polluted samples have been exposed to water vapor adsorption at controlled relative humidity to mimic environmental conditions. In presence of pollutants, the T2 distributions of water in stone exhibit a range of relaxation time values and amplitudes not observed in the unpolluted case. These characteristics could be exploited for in situ noninvasive detection of salt pollution in Lecce stone or as damage precursors in architectural buildings of cultural heritage interest
- …