5,539 research outputs found
Finite Temperature Casimir Effect in the Presence of Extra Dimensions
We consider the finite temperature Casimir force acting on two parallel
plates in a closed cylinder with the same cross section of arbitrary shape in
the presence of extra dimensions. Dirichlet boundary conditions are imposed on
one plate and fractional Neumann conditions with order between zero (Dirichlet)
and one (Neumann) are imposed on the other plate. Formulas for the Casimir
force show that it is always attractive for Dirichlet boundary conditions, and
is always repulsive when the fractional order is larger than 1/2. For some
fractional orders less than 1/2, the Casimir force can be either attractive or
repulsive depending on the size of the internal manifold and temperature.Comment: To appear in the proceedings of 9th Conference on Quantum Field
Theory under the Influence of External Conditions (QFEXT 09): Devoted to the
Centenary of H. B. G. Casimir, Norman, Oklahoma, 21-25 Sep 200
Non-degenerate solutions of universal Whitham hierarchy
The notion of non-degenerate solutions for the dispersionless Toda hierarchy
is generalized to the universal Whitham hierarchy of genus zero with
marked points. These solutions are characterized by a Riemann-Hilbert problem
(generalized string equations) with respect to two-dimensional canonical
transformations, and may be thought of as a kind of general solutions of the
hierarchy. The Riemann-Hilbert problem contains arbitrary functions
, , which play the role of generating functions of
two-dimensional canonical transformations. The solution of the Riemann-Hilbert
problem is described by period maps on the space of -tuples
of conformal maps from disks of the
Riemann sphere and their complements to the Riemann sphere. The period maps are
defined by an infinite number of contour integrals that generalize the notion
of harmonic moments. The -function (free energy) of these solutions is also
shown to have a contour integral representation.Comment: latex2e, using amsmath, amssym and amsthm packages, 32 pages, no
figur
Finite Temperature Casimir Effect and Dispersion in the Presence of Compactified Extra Dimensions
Finite temperature Casimir theory of the Dirichlet scalar field is developed,
assuming that there is a conventional Casimir setup in physical space with two
infinitely large plates separated by a gap R and in addition an arbitrary
number q of extra compacified dimensions. As a generalization of earlier
theory, we assume in the first part of the paper that there is a scalar
'refractive index' N filling the whole of the physical space region. After
presenting general expressions for free energy and Casimir forces we focus on
the low temperature case, as this is of main physical interest both for force
measurements and also for issues related to entropy and the Nernst theorem.
Thereafter, in the second part we analyze dispersive properties, assuming for
simplicity q=1, by taking into account dispersion associated with the first
Matsubara frequency only. The medium-induced contribution to the free energy,
and pressure, is calculated at low temperatures.Comment: 25 pages, one figure. Minor changes in the discussion. Version to
appear in Physica Script
Understanding organisational use of IT/IS for demand and supply chain management in a MNC pharmaceutical company
Demand supply chain management (DSCM), which integrates market segmentation with supply chain strategy supported by proper alignment in organizational configuration, is regarded by researchers as the next stage of evolution of supply chain management. Through an exploratory case study of the pharmaceutical industry, this study investigates the role of information systems / information technology (IS/IT) as an enabler of DSCM. The findings reveal that there is little alignment between IS and supply chain strategy even though technology is used widely in the company that is investigated. The lack of alignment has prevented the organisation from being DSCM capable. The study highlights the impacts of lack of alignment between IS and DSCM and helps practitioners understand the implications
Casimir effect of electromagnetic field in Randall-Sundrum spacetime
We study the finite temperature Casimir effect on a pair of parallel
perfectly conducting plates in Randall-Sundrum model without using scalar field
analogy. Two different ways of interpreting perfectly conducting conditions are
discussed. The conventional way that uses perfectly conducting condition
induced from 5D leads to three discrete mode corrections. This is very
different from the result obtained from imposing 4D perfectly conducting
conditions on the 4D massless and massive vector fields obtained by decomposing
the 5D electromagnetic field. The latter only contains two discrete mode
corrections, but it has a continuum mode correction that depends on the
thicknesses of the plates. It is shown that under both boundary conditions, the
corrections to the Casimir force make the Casimir force more attractive. The
correction under 4D perfectly conducting condition is always smaller than the
correction under the 5D induced perfectly conducting condition. These
statements are true at any temperature.Comment: 20 pages, 4 figure
The Multicomponent KP Hierarchy: Differential Fay Identities and Lax Equations
In this article, we show that four sets of differential Fay identities of an
-component KP hierarchy derived from the bilinear relation satisfied by the
tau function of the hierarchy are sufficient to derive the auxiliary linear
equations for the wave functions. From this, we derive the Lax representation
for the -component KP hierarchy, which are equations satisfied by some
pseudodifferential operators with matrix coefficients. Besides the Lax
equations with respect to the time variables proposed in \cite{2}, we also
obtain a set of equations relating different charge sectors, which can be
considered as a generalization of the modified KP hierarchy proposed in
\cite{3}.Comment: 19 page
An Efficient Computational Approach to a Class of Minmax Optimal Control Problems with Applications
In this paper, an efficient computation method is developed for solving a general class of minmax optimal control problems, where the minimum deviation from the violation of the continuous state inequality constraints is maximized. The constraint transcription method is used to construct a smooth approximate function for each of the continuous state inequality constraints. We then obtain an approximate optimal control problem with the integral of the summation of these smooth approximate functions as its cost function. A necessary condition and a sufficient condition are derived showing the relationship between the original problem and the smooth approximate problem. We then construct a violation function from the solution of the smooth approximate optimal control problem and the original continuous state inequality constraints in such a way that the optimal control of the minmax problem is equivalent to the largest root of the violation function, and hence can be solved by the bisection search method. The control parametrization and a time scaling transform are applied to these optimal control problems. We then consider two practical problems: the obstacle avoidance optimal control problem and the abort landing of an aircraft in a windshear downburst
Casimir effect of electromagnetic field in D-dimensional spherically symmetric cavities
Eigenmodes of electromagnetic field with perfectly conducting or infinitely
permeable conditions on the boundary of a D-dimensional spherically symmetric
cavity is derived explicitly. It is shown that there are (D-2) polarizations
for TE modes and one polarization for TM modes, giving rise to a total of (D-1)
polarizations. In case of a D-dimensional ball, the eigenfrequencies of
electromagnetic field with perfectly conducting boundary condition coincides
with the eigenfrequencies of gauge one-forms with relative boundary condition;
whereas the eigenfrequencies of electromagnetic field with infinitely permeable
boundary condition coincides with the eigenfrequencies of gauge one-forms with
absolute boundary condition. Casimir energy for a D-dimensional spherical shell
configuration is computed using both cut-off regularization and zeta
regularization. For a double spherical shell configuration, it is shown that
the Casimir energy can be written as a sum of the single spherical shell
contributions and an interacting term, and the latter is free of divergence.
The interacting term always gives rise to an attractive force between the two
spherical shells. Its leading term is the Casimir force acting between two
parallel plates of the same area, as expected by proximity force approximation.Comment: 28 page
Electromagnetic Casimir piston in higher dimensional spacetimes
We consider the Casimir effect of the electromagnetic field in a higher
dimensional spacetime of the form , where is the
4-dimensional Minkowski spacetime and is an -dimensional
compact manifold. The Casimir force acting on a planar piston that can move
freely inside a closed cylinder with the same cross section is investigated.
Different combinations of perfectly conducting boundary conditions and
infinitely permeable boundary conditions are imposed on the cylinder and the
piston. It is verified that if the piston and the cylinder have the same
boundary conditions, the piston is always going to be pulled towards the closer
end of the cylinder. However, if the piston and the cylinder have different
boundary conditions, the piston is always going to be pushed to the middle of
the cylinder. By taking the limit where one end of the cylinder tends to
infinity, one obtains the Casimir force acting between two parallel plates
inside an infinitely long cylinder. The asymptotic behavior of this Casimir
force in the high temperature regime and the low temperature regime are
investigated for the case where the cross section of the cylinder in is
large. It is found that if the separation between the plates is much smaller
than the size of , the leading term of the Casimir force is the
same as the Casimir force on a pair of large parallel plates in the
-dimensional Minkowski spacetime. However, if the size of
is much smaller than the separation between the plates, the leading term of the
Casimir force is times the Casimir force on a pair of large parallel
plates in the 4-dimensional Minkowski spacetime, where is the first Betti
number of . In the limit the manifold vanishes, one
does not obtain the Casimir force in the 4-dimensional Minkowski spacetime if
is nonzero.Comment: 22 pages, 4 figure
Finite temperature Casimir pistons for electromagnetic field with mixed boundary conditions and its classical limit
In this paper, the finite temperature Casimir force acting on a
two-dimensional Casimir piston due to electromagnetic field is computed. It was
found that if mixed boundary conditions are assumed on the piston and its
opposite wall, then the Casimir force always tends to restore the piston
towards the equilibrium position, regardless of the boundary conditions assumed
on the walls transverse to the piston. In contrary, if pure boundary conditions
are assumed on the piston and the opposite wall, then the Casimir force always
tend to pull the piston towards the closer wall and away from the equilibrium
position. The nature of the force is not affected by temperature. However, in
the high temperature regime, the magnitude of the Casimir force grows linearly
with respect to temperature. This shows that the Casimir effect has a classical
limit as has been observed in other literatures.Comment: 14 pages, 3 figures, accepted by Journal of Physics
- …