7,515 research outputs found

    A slow and dark atomic beam

    Full text link
    We demonstrate a method to produce a very slow atomic beam from a vapour cell magneto-optical trap. Atoms are extracted from the trap using the radiation pressure imbalance caused by a push beam. An additional transfer beam placed near the center of the trap transfers the atomic beam into an off-resonant state. The velocity of the atomic beam has been varied by changing the intensity of the push beam or the position of the transfer beam. The method can be used to generate a continuous, magnetically guided atomic beam in a dark state.Comment: 14 page

    Nonexistence theorems for traversable wormholes

    Full text link
    Gauss-Bonnet formula is used to derive a new and simple theorem of nonexistence of vacuum static nonsingular lorentzian wormholes. We also derive simple proofs for the nonexistence of lorentzian wormhole solutions for some classes of static matter such as, for instance, real scalar fields with a generic potential obeying ϕV′(ϕ)≥0\phi V'(\phi) \ge 0 and massless fermions fields

    An Efficient Computational Approach to a Class of Minmax Optimal Control Problems with Applications

    Get PDF
    In this paper, an efficient computation method is developed for solving a general class of minmax optimal control problems, where the minimum deviation from the violation of the continuous state inequality constraints is maximized. The constraint transcription method is used to construct a smooth approximate function for each of the continuous state inequality constraints. We then obtain an approximate optimal control problem with the integral of the summation of these smooth approximate functions as its cost function. A necessary condition and a sufficient condition are derived showing the relationship between the original problem and the smooth approximate problem. We then construct a violation function from the solution of the smooth approximate optimal control problem and the original continuous state inequality constraints in such a way that the optimal control of the minmax problem is equivalent to the largest root of the violation function, and hence can be solved by the bisection search method. The control parametrization and a time scaling transform are applied to these optimal control problems. We then consider two practical problems: the obstacle avoidance optimal control problem and the abort landing of an aircraft in a windshear downburst

    Casimir effect of electromagnetic field in Randall-Sundrum spacetime

    Full text link
    We study the finite temperature Casimir effect on a pair of parallel perfectly conducting plates in Randall-Sundrum model without using scalar field analogy. Two different ways of interpreting perfectly conducting conditions are discussed. The conventional way that uses perfectly conducting condition induced from 5D leads to three discrete mode corrections. This is very different from the result obtained from imposing 4D perfectly conducting conditions on the 4D massless and massive vector fields obtained by decomposing the 5D electromagnetic field. The latter only contains two discrete mode corrections, but it has a continuum mode correction that depends on the thicknesses of the plates. It is shown that under both boundary conditions, the corrections to the Casimir force make the Casimir force more attractive. The correction under 4D perfectly conducting condition is always smaller than the correction under the 5D induced perfectly conducting condition. These statements are true at any temperature.Comment: 20 pages, 4 figure

    Surface States of the Topological Insulator Bi_{1-x}Sb_x

    Full text link
    We study the electronic surface states of the semiconducting alloy BiSb. Using a phenomenological tight binding model we show that the Fermi surface of the 111 surface states encloses an odd number of time reversal invariant momenta (TRIM) in the surface Brillouin zone confirming that the alloy is a strong topological insulator. We then develop general arguments which show that spatial symmetries lead to additional topological structure, and further constrain the surface band structure. Inversion symmetric crystals have 8 Z_2 "parity invariants", which include the 4 Z_2 invariants due to time reversal. The extra invariants determine the "surface fermion parity", which specifies which surface TRIM are enclosed by an odd number of electron or hole pockets. We provide a simple proof of this result, which provides a direct link between the surface states and the bulk parity eigenvalues. We then make specific predictions for the surface state structure for several faces of BiSb. We next show that mirror invariant band structures are characterized by an integer "mirror Chern number", n_M. The sign of n_M in the topological insulator phase of BiSb is related to a previously unexplored Z_2 parameter in the L point k.p theory of pure Bi, which we refer to as the "mirror chirality", \eta. The value of \eta predicted by the tight binding model for Bi disagrees with the value predicted by a more fundamental pseudopotential calculation. This explains a subtle disagreement between our tight binding surface state calculation and previous first principles calculations on Bi. This suggests that the tight binding parameters in the Liu Allen model of Bi need to be reconsidered. Implications for existing and future ARPES experiments and spin polarized ARPES experiments will be discussed.Comment: 15 pages, 7 figure

    Scalar Casimir effect between two concentric D-dimensional spheres

    Full text link
    The Casimir energy for a massless scalar field between the closely spaced two concentric D-dimensional (for D>3) spheres is calculated by using the mode summation with contour integration in the complex plane of eigenfrequencies and the generalized Abel-Plana formula for evenly spaced eigenfrequency at large argument. The sign of the Casimir energy between closely spaced two concentric D-dimensional spheres for a massless scalar field satisfying the Dirichlet boundary conditions is strictly negative. The Casimir energy between D-1 dimensional surfaces close to each other is regarded as interesting both by itself and as the key to describing of stability of the attractive Casimir force. PACS number(s): 03.70.+k, 11.10.Kk, 11.10.Gh, 03.65.GeComment: 14 pages. arXiv admin note: substantial text overlap with arXiv:1207.418

    Mode summation approach to Casimir effect between two objects

    Full text link
    In this paper, we explore the TGTG formula from the perspective of mode summation approach. Both scalar fields and electromagnetic fields are considered. In this approach, one has to first solve the equation of motion to find a wave basis for each object. The two T's in the TGTG formula are T-matrices representing the Lippmann-Schwinger T-operators, one for each of the objects. The two G's in the TGTG formula are the translation matrices, relating the wave basis of an object to the wave basis of the other object. After discussing the general theory, we apply the prescription to derive the explicit formulas for the Casimir energies for the sphere-sphere, sphere-plane, cylinder-cylinder and cylinder-plane interactions. First the T-matrices for a plane, a sphere and a cylinder are derived for the following cases: the object is imposed with general Robin boundary conditions; the object is semitransparent; and the object is magnetodielectric. Then the operator approach is used to derive the translation matrices. From these, the explicit TGTG formula for each of the scenarios can be written down. Besides summarizing all the TGTG formulas that have been derived so far, we also provide the TGTG formulas for some scenarios that have not been considered before.Comment: 42 page
    • …
    corecore