1,964 research outputs found
The electro production of d* dibaryon
dibaryon study is a critical test of hadron interaction models. The
electro production cross sections of have been calculated based on
the meson exchange current model and the cross section around 30 degree of 1
GeV electron in the laboratory frame is about 10 nb. The implication of this
result for the dibaryon search has been discussed.Comment: 12 pages, 12 figures, Late
Double Pion Photoproduction in Nuclei
The inclusive A(gamma,pi+ pi-)X reaction is studied theoretically. A sizeable
enhancement of the cross section is found, in comparison with the scaling of
the deuteron cross section (sigma_deuteron * A/2). This enhancement is due to
the modifications in the nuclear medium of the gamma N ----> pi pi N amplitude
and the pion dispersion relation. The enhancement is found to be bigger than
the one already observed in the (pi,pi pi) reaction in nuclei.Comment: 11 pages, 7 figures (figures available from authors); TeX, Version
3.141 [PD VMS 3.4/CERN 1.0
Restrictions on the coherence of the ultrafast optical emission from an electron-hole pairs condensate
We report on the transfer of coherence from a quantum-well electron-hole
condensate to the light it emits. As a function of density, the coherence of
the electron-hole pair system evolves from being full for the low density
Bose-Einstein condensate to a chaotic behavior for a high density BCS-like
state. This degree of coherence is transfered to the light emitted in a damped
oscillatory way in the ultrafast regime. Additionally, the photon field
exhibits squeezing properties during the transfer time. We analyze the effect
of light frequency and separation between electron and hole layers on the
optical coherence. Our results suggest new type of ultrafast experiments for
detecting electron-hole pair condensation.Comment: 4 pages,3 figures, to be published in Physical Review Letters. Minor
change
All-optical non-demolition measurement of single-hole spin in a quantum-dot molecule
We propose an all-optical scheme to perform a non-demolition measurement of a
single hole spin localized in a quantum-dot molecule. The latter is embedded in
a microcavity and driven by two lasers. This allows to induce Raman transitions
which entangle the spin state with the polarization of the emitted photons. We
find that the measurement can be completed with high fidelity on a timescale of
100 ps, shorter than the typical T2. Furthermore, we show that the scheme can
be used to induce and observe spin oscillations without the need of
time-dependent magnetic fields
Spin Information from Vector-Meson Decay in Photoproduction
For the photoproduction of vector mesons, all single and double spin
observables involving vector meson two-body decays are defined consistently in
the center of mass. These definitions yield a procedure for
extracting physically meaningful single and double spin observables that are
subject to known rules concerning their angle and energy evolution. As part of
this analysis, we show that measuring the two-meson decay of a photoproduced
or does not determine the vector meson's vector polarization, but
only its tensor polarization. The vector meson decay into lepton pairs is also
insensitive to the vector meson's vector polarization, unless one measures the
spin of one of the leptons. Similar results are found for all double spin
observables which involve observation of vector meson decay. To access the
vector meson's vector polarization, one therefore needs to either measure the
spin of the decay leptons, make an analysis of the background interference
effects or relate the vector meson's vector polarization to other accessible
spin observables.Comment: 22 pages, 3 figure
Optimizing photon indistinguishability in the emission from incoherently-excited semiconductor quantum dots
Most optical quantum devices require deterministic single-photon emitters.
Schemes so far demonstrated in the solid state imply an energy relaxation which
tends to spoil the coherent nature of the time evolution, and with it the
photon indistinguishability. We focus our theoretical investigation on
semiconductor quantum dots embedded in microcavities. Simple and general
relations are identified between the photon indistinguishability and the
collection efficiency. The identification of the key parameters and of their
interplay provides clear indications for the device optimization
- …