5 research outputs found

    Illumination of Parainfluenza Virus Infection and Transmission in Living Animals Reveals a Tissue-Specific Dichotomy

    Get PDF
    The parainfluenza viruses (PIVs) are highly contagious respiratory paramyxoviruses and a leading cause of lower respiratory tract (LRT) disease. Since no vaccines or antivirals exist, non-pharmaceutical interventions are the only means of control for these pathogens. Here we used bioluminescence imaging to visualize the spatial and temporal progression of murine PIV1 (Sendai virus) infection in living mice after intranasal inoculation or exposure by contact. A non-attenuated luciferase reporter virus (rSeV-luc(M-F*)) that expressed high levels of luciferase yet was phenotypically similar to wild-type Sendai virus in vitro and in vivo was generated to allow visualization. After direct intranasal inoculation, we unexpectedly observed that the upper respiratory tract (URT) and trachea supported robust infection under conditions that result in little infection or pathology in the lungs including a low inoculum of virus, an attenuated virus, and strains of mice genetically resistant to lung infection. The high permissivity of the URT and trachea to infection resulted in 100% transmission to naΓ―ve contact recipients, even after low-dose (70 PFU) inoculation of genetically resistant BALB/c donor mice. The timing of transmission was consistent with the timing of high viral titers in the URT and trachea of donor animals but was independent of the levels of infection in the lungs of donors. The data therefore reveals a disconnect between transmissibility, which is associated with infection in the URT, and pathogenesis, which arises from infection in the lungs and the immune response. Natural infection after transmission was universally robust in the URT and trachea yet limited in the lungs, inducing protective immunity without weight loss even in genetically susceptible 129/SvJ mice. Overall, these results reveal a dichotomy between PIV infection in the URT and trachea versus the lungs and define a new model for studies of pathogenesis, development of live virus vaccines, and testing of antiviral therapies

    The potential effects of floor impact surfaces on infant head injury outcome during a short fall

    No full text
    When considering cases of infant head injury as a result of a short fall, investigators often have to base their opinions on the potential severity of a head injury on a scene description and/or photographic evidence of the potential impact surfaces. While variation in the attenuation properties of typical domestic surfaces and underlying support structures have been reported in the literature, this study investigates whether there is a need to consider the nature and composition of specific potential impact floor surfaces/sites, within a scene, prior to providing an opinion about the likely head impact injury outcome. An instrumented headform was impacted within a suspected crime scene to determine whether different potential impact sites posed different risks of producing head injury. The impact acceleration-time waveform, for the headform, was shown to vary considerably across the floor. By applying recognized head impact injury risk measures (peak g and head injury criterion), it was illustrated that the risk of an infant sustaining a significant head injury could vary considerably, depending upon the exact point of impact with the floor. This study highlights the potential for variation in impact force across a scene and illustrates the need to consider surface composition at specific sites across the entire potential impact area, since the risk of head injury can vary significantly. Caution should therefore be exercised when expressing opinions based solely on verbal, written or photographic evidence of head impact surfaces, without due consideration of the specific area onto which a head might have impacted

    Paramyxoviruses: Parainfluenza Viruses

    No full text
    corecore