869 research outputs found

    Average prime-pair counting formula

    Get PDF
    Taking r>0r>0, let Ο€2r(x)\pi_{2r}(x) denote the number of prime pairs (p,p+2r)(p, p+2r) with p≀xp\le x. The prime-pair conjecture of Hardy and Littlewood (1923) asserts that Ο€2r(x)∼2C2rli2(x)\pi_{2r}(x)\sim 2C_{2r} {\rm li}_2(x) with an explicit constant C2r>0C_{2r}>0. There seems to be no good conjecture for the remainders Ο‰2r(x)=Ο€2r(x)βˆ’2C2rli2(x)\omega_{2r}(x)=\pi_{2r}(x)- 2C_{2r} {\rm li}_2(x) that corresponds to Riemann's formula for Ο€(x)βˆ’li(x)\pi(x)-{\rm li}(x). However, there is a heuristic approximate formula for averages of the remainders Ο‰2r(x)\omega_{2r}(x) which is supported by numerical results.Comment: 26 pages, 6 figure

    The hexagonal versus the square lattice

    Get PDF
    We establish Schmutz Schaller's conjecture that the hexagonal lattice is `better' than the square lattice. Schmutz Schaller (Bulletin of the AMS 35 (1998), p. 201), motivated by considerations from hyperbolic geometry, conjectured that in dimensions 2 to 8 the best known lattice sphere packings have `maximal lengths' and goes on to write: "In dimension 2 the conjecture means in particular that the hexagonal lattice is `better' than the square lattice. More precisely, let 0<h_1<h_2<... be the positive integers, listed in ascending order, which can be written as h_i=x^2+3y^2 for integers x and y. Let 0<q_1<q_2<... be the positive integers, listed in ascending order, which can be written as q_i=x^2+y^2 for integers x and y. Then the conjecture is that q_i<=h_i for i=1,2,3,..." Our proof requires computational prime number theory in combination with methods from a preprint of the first author (to appear in Math. Comp.), arXiv:math.NT/0112100.Comment: 24 pages, 6 figures, 2 table

    On generating new amicable pairs from given amicable pairs

    Get PDF

    Iteration of number-theoretic functions

    Get PDF
    • …
    corecore