1,936 research outputs found
Understanding missed opportunities for more timely diagnosis of cancer in symptomatic patients after presentation.
The diagnosis of cancer is a complex, multi-step process. In this paper, we highlight factors involved in missed opportunities to diagnose cancer more promptly in symptomatic patients and discuss responsible mechanisms and potential strategies to shorten intervals from presentation to diagnosis. Missed opportunities are instances in which post-hoc judgement indicates that alternative decisions or actions could have led to more timely diagnosis. They can occur in any of the three phases of the diagnostic process (initial diagnostic assessment; diagnostic test performance and interpretation; and diagnostic follow-up and coordination) and can involve patient, doctor/care team, and health-care system factors, often in combination. In this perspective article, we consider epidemiological 'signals' suggestive of missed opportunities and draw on evidence from retrospective case reviews of cancer patient cohorts to summarise factors that contribute to missed opportunities. Multi-disciplinary research targeting such factors is important to shorten diagnostic intervals post presentation. Insights from the fields of organisational and cognitive psychology, human factors science and informatics can be extremely valuable in this emerging research agenda. We provide a conceptual foundation for the development of future interventions to minimise the occurrence of missed opportunities in cancer diagnosis, enriching current approaches that chiefly focus on clinical decision support or on widening access to investigations.We acknowledge the helpful and incisive comments by Dr Rikke Sand Andersen (Aarhus University, Denmark) in conceptualising this piece and in drafts of the manuscript. The work is independent research supported by different funding schemes. GL was supported by a Post-Doctoral Fellowship by the National Institute for Health Research (PDF-2011-04-047) until the end of 2014 and by a Cancer Research UK Clinician Scientist Fellowship award (A18180) from 2015. HS is supported by the VA Health Services Research and Development Service (CRE 12-033; Presidential Early Career Award for Scientists and Engineers USA 14-274), the VA National Center for Patient Safety, the Agency for Health Care Research and Quality (R01HS022087) and in part by the Houston VA HSR&D Center for Innovations in Quality, Effectiveness and Safety (CIN 13–413). PV was supported by CaP, funded by The Danish Cancer Society and the Novo Nordisk Foundation.This is the final version of the article. It first appeared at http://dx.doi.org/10.1038/bjc.2015.4
Genomic variability in Potato virus M and the development of RT-PCR and RFLP procedures for the detection of this virus in seed potatoes
Potato virus M (PVM, Carlavirus) is considered to be one of the most common potato viruses distributed worldwide. Sequences of the coat protein (CP) gene of several Canadian PVM isolates were determined. Phylogenetic analysis indicated that all known PVM isolates fell into two distinct groups and the isolates from Canada and the US clustered in the same group. The Canadian PVM isolates could be further divided into two sub-groups. Two molecular procedures, reverse transcription - polymerase chain reaction (RT-PCR) and restriction fragment length polymorphism (RFLP) were developed in this study for the detection and identification of PVM in potato tubers. RT-PCR was highly specific and only amplified PVM RNA from potato samples. PVM RNAs were easily detected in composite samples of 400 to 800 potato leaves or 200 to 400 dormant tubers. Restriction analysis of PCR amplicons with MscI was a simple method for the confirmation of PCR tests. Thus, RT-PCR followed by RFLP analysis may be a useful approach for screening potato samples on a large scale for the presence of PVM
Intravitreal ranibizumab, photodynamic therapy, and vitreous surgery for the treatment of juxtapapillary retinal capillary hemangioma
published_or_final_versionSpringer Open Choice, 21 Feb 201
A survey of performance enhancement of transmission control protocol (TCP) in wireless ad hoc networks
This Article is provided by the Brunel Open Access Publishing Fund - Copyright @ 2011 Springer OpenTransmission control protocol (TCP), which provides reliable end-to-end data delivery, performs well in traditional wired network environments, while in wireless ad hoc networks, it does not perform well. Compared to wired networks, wireless ad hoc networks have some specific characteristics such as node mobility and a shared medium. Owing to these specific characteristics of wireless ad hoc networks, TCP faces particular problems with, for example, route failure, channel contention and high bit error rates. These factors are responsible for the performance degradation of TCP in wireless ad hoc networks. The research community has produced a wide range of proposals to improve the performance of TCP in wireless ad hoc networks. This article presents a survey of these proposals (approaches). A classification of TCP improvement proposals for wireless ad hoc networks is presented, which makes it easy to compare the proposals falling under the same category. Tables which summarize the approaches for quick overview are provided. Possible directions for further improvements in this area are suggested in the conclusions. The aim of the article is to enable the reader to quickly acquire an overview of the state of TCP in wireless ad hoc networks.This study is partly funded by Kohat University of Science & Technology (KUST),
Pakistan, and the Higher Education Commission, Pakistan
Mechanism of Splicing Regulation of Spinal Muscular Atrophy Genes
Spinal muscular atrophy (SMA) is one of the major genetic disorders associated with infant mortality. More than 90% cases of SMA result from deletions or mutations of Survival Motor Neuron 1 (SMN1) gene. SMN2, a nearly identical copy of SMN1, does not compensate for the loss of SMN1due to predominant skipping of exon 7. However, correction of SMN2 exon 7 splicing has proven to confer therapeutic benefits in SMA patients. The only approved drug for SMA is an antisense oligonucleotide (Spinraza™/Nusinersen), which corrects SMN2 exon 7 splicing by blocking intronic splicing silencer N1 (ISS-N1) located immediately downstream of exon 7. ISS-N1 is a complex regulatory element encompassing overlapping negative motifs and sequestering a cryptic splice site. More than 40 protein factors have been implicated in the regulation of SMN exon 7 splicing. There is evidence to support that multiple exons of SMN are alternatively spliced during oxidative stress, which is associated with a growing number of pathological conditions. Here, we provide the most up to date account of the mechanism of splicing regulation of the SMN genes
Prediction of MHC class II binding affinity using SMM-align, a novel stabilization matrix alignment method
<p>Abstract</p> <p>Background</p> <p>Antigen presenting cells (APCs) sample the extra cellular space and present peptides from here to T helper cells, which can be activated if the peptides are of foreign origin. The peptides are presented on the surface of the cells in complex with major histocompatibility class II (MHC II) molecules. Identification of peptides that bind MHC II molecules is thus a key step in rational vaccine design and developing methods for accurate prediction of the peptide:MHC interactions play a central role in epitope discovery. The MHC class II binding groove is open at both ends making the correct alignment of a peptide in the binding groove a crucial part of identifying the core of an MHC class II binding motif. Here, we present a novel stabilization matrix alignment method, SMM-align, that allows for direct prediction of peptide:MHC binding affinities. The predictive performance of the method is validated on a large MHC class II benchmark data set covering 14 HLA-DR (human MHC) and three mouse H2-IA alleles.</p> <p>Results</p> <p>The predictive performance of the SMM-align method was demonstrated to be superior to that of the Gibbs sampler, TEPITOPE, SVRMHC, and MHCpred methods. Cross validation between peptide data set obtained from different sources demonstrated that direct incorporation of peptide length potentially results in over-fitting of the binding prediction method. Focusing on amino terminal peptide flanking residues (PFR), we demonstrate a consistent gain in predictive performance by favoring binding registers with a minimum PFR length of two amino acids. Visualizing the binding motif as obtained by the SMM-align and TEPITOPE methods highlights a series of fundamental discrepancies between the two predicted motifs. For the DRB1*1302 allele for instance, the TEPITOPE method favors basic amino acids at most anchor positions, whereas the SMM-align method identifies a preference for hydrophobic or neutral amino acids at the anchors.</p> <p>Conclusion</p> <p>The SMM-align method was shown to outperform other state of the art MHC class II prediction methods. The method predicts quantitative peptide:MHC binding affinity values, making it ideally suited for rational epitope discovery. The method has been trained and evaluated on the, to our knowledge, largest benchmark data set publicly available and covers the nine HLA-DR supertypes suggested as well as three mouse H2-IA allele. Both the peptide benchmark data set, and SMM-align prediction method (<it>NetMHCII</it>) are made publicly available.</p
Diagnostic accuracy of FET-PET/CT, FDG-PET/CT and diffusion-weighted MRI in detection of nodal metastases in surgically treated endometrial and cervical carcinoma
PURPOSE:Pre-operative nodal staging is important for planning treatment in cervical cancer (CC) and endometrial cancer (EC) but remains challenging. We compare nodal staging accuracy of {18}^F-ethyl-choline-(FEC)-PET/CT, {18}^F-Fluoro-deoxy-glucose-(FDG)-PET/CT and diffusion-weighted-MRI (DW-MRI) with conventional morphological MRI. Experimental Design: A prospective, multicentre observational study of diagnostic accuracy for nodal metastases was undertaken in 5 gyne-oncology centres. FEC-PET/CT, FDG-PET/CT and DW-MRI were compared to nodal size and morphology on MRI. Reference standard was strictly correlated nodal histology. Eligibility included operable CC stage=>1B1 or EC (grade 3 any stage with myometrial invasion or grade 1-2 stage=>II). RESULTS: Among 162 consenting participants, 136 underwent study DW-MRI and FDG-PET/CT, and 60 underwent FEC-PET/CT. 267 nodal regions in 118 women were strictly correlated at histology (nodal positivity rate 25%). Sensitivity per-patient (n=118) for nodal size, morphology, DW-MRI, FDG- and FEC-PET/CT were 40%*, 53%, 53%, 63%* and 67% for all cases (*p=0.016); 10%, 10%, 20%, 30% and 25% in CC (n=40); 65%, 75%, 70%, 80% and 88% in EC (n=78). FDG-PET/CT outperformed nodal size (p=0.006) and size ratio (p=0.04) for per-region sensitivity. False positive rates were all <10%. CONCLUSIONS: All imaging techniques had low sensitivity for detection of nodal metastases and cannot replace surgical nodal staging. The performance of FEC-PET/CT was not statistically different to other techniques that are more widely available. FDG-PET/CT had higher sensitivity than size in detecting nodal metastases. False positive rates were low across all methods. The low false positive rate demonstrated by FDG-PET/CT may be helpful in arbitration of challenging surgical planning decisions
Methods to study splicing from high-throughput RNA Sequencing data
The development of novel high-throughput sequencing (HTS) methods for RNA
(RNA-Seq) has provided a very powerful mean to study splicing under multiple
conditions at unprecedented depth. However, the complexity of the information
to be analyzed has turned this into a challenging task. In the last few years,
a plethora of tools have been developed, allowing researchers to process
RNA-Seq data to study the expression of isoforms and splicing events, and their
relative changes under different conditions. We provide an overview of the
methods available to study splicing from short RNA-Seq data. We group the
methods according to the different questions they address: 1) Assignment of the
sequencing reads to their likely gene of origin. This is addressed by methods
that map reads to the genome and/or to the available gene annotations. 2)
Recovering the sequence of splicing events and isoforms. This is addressed by
transcript reconstruction and de novo assembly methods. 3) Quantification of
events and isoforms. Either after reconstructing transcripts or using an
annotation, many methods estimate the expression level or the relative usage of
isoforms and/or events. 4) Providing an isoform or event view of differential
splicing or expression. These include methods that compare relative
event/isoform abundance or isoform expression across two or more conditions. 5)
Visualizing splicing regulation. Various tools facilitate the visualization of
the RNA-Seq data in the context of alternative splicing. In this review, we do
not describe the specific mathematical models behind each method. Our aim is
rather to provide an overview that could serve as an entry point for users who
need to decide on a suitable tool for a specific analysis. We also attempt to
propose a classification of the tools according to the operations they do, to
facilitate the comparison and choice of methods.Comment: 31 pages, 1 figure, 9 tables. Small corrections adde
PfHRP2 and PfLDH antigen detection for monitoring the efficacy of artemisinin-based combination therapy (ACT) in the treatment of uncomplicated falciparum malaria
<p>Abstract</p> <p>Background</p> <p>An assessment of the accuracy of two malaria rapid diagnostic tests (RDT) for the detection of <it>Plasmodium falciparum </it>histidine-rich protein 2 (<it>Pf</it>HRP2) or <it>Pf </it>lactate dehydrogenase (<it>Pf</it>LDH) was undertaken in children aged between six and 59 months included in an anti-malarial efficacy study in Benin.</p> <p>Methods</p> <p>In Allada (Benin), 205 children aged 6-59 months with falciparum malaria received either artesunate-amodiaquine (ASAQ), artemether-lumefantrine (AL), or sulphadoxine-pyrimethamine (SP). Children included in the study were simultaneously followed by both RDT and high-quality microscopy for up to 42 days.</p> <p>Results</p> <p>At the time of inclusion, <it>Pf</it>HRP2-based tests were positive in 203 children (99%) and <it>Pf</it>LDH-based tests were positive in 204 (99.5%). During follow-up, independent of the treatment received, only 17.3% (28/162) of children effectively cured were negative with the <it>Pf</it>HRP2 RDT at day 3, with a gradual increase in specificity until day 42. The specificity of antigen detection with the <it>Pf</it>LDH test was 87% (141/162) on day 3, and between 92% and 100% on days 7 to 42. A statistical difference was observed between the persistence of <it>Pf</it>HRP2 and <it>Pf</it>LDH antigenaemia during follow-up in children treated with artemisinin-based combination therapy (ACT) but not with SP.</p> <p>Conclusion</p> <p>Although both RDTs are as sensitive as microscopy in detecting true malaria cases, the <it>Pf</it>HRP2 RDT had very low specificity during follow-up until day 28. On the other hand, the <it>Pf</it>LDH test could be used to detect failures and, therefore, to assess anti-malarial efficacy.</p
- …