344 research outputs found

    Topological semimetal in a fermionic optical lattice

    Full text link
    Optical lattices play a versatile role in advancing our understanding of correlated quantum matter. The recent implementation of orbital degrees of freedom in chequerboard and hexagonal optical lattices opens up a new thrust towards discovering novel quantum states of matter, which have no prior analogs in solid state electronic materials. Here, we demonstrate that an exotic topological semimetal emerges as a parity-protected gapless state in the orbital bands of a two-dimensional fermionic optical lattice. The new quantum state is characterized by a parabolic band-degeneracy point with Berry flux 2π2\pi, in sharp contrast to the π\pi flux of Dirac points as in graphene. We prove that the appearance of this topological liquid is universal for all lattices with D4_4 point group symmetry as long as orbitals with opposite parities hybridize strongly with each other and the band degeneracy is protected by odd parity. Turning on inter-particle repulsive interactions, the system undergoes a phase transition to a topological insulator whose experimental signature includes chiral gapless domain-wall modes, reminiscent of quantum Hall edge states.Comment: 6 pages, 3 figures and Supplementary Informatio

    Exoplanet phase curves: observations and theory

    Full text link
    Phase curves are the best technique to probe the three dimensional structure of exoplanets' atmospheres. In this chapter we first review current exoplanets phase curve observations and the particular challenges they face. We then describe the different physical mechanisms shaping the atmospheric phase curves of highly irradiated tidally locked exoplanets. Finally, we discuss the potential for future missions to further advance our understanding of these new worlds.Comment: Fig.5 has been updated. Table 1 and corresponding figures have been updated with new values for WASP-103b and WASP-18b. Contains a table sumarizing phase curve observation

    Quantum Computing

    Full text link
    Quantum mechanics---the theory describing the fundamental workings of nature---is famously counterintuitive: it predicts that a particle can be in two places at the same time, and that two remote particles can be inextricably and instantaneously linked. These predictions have been the topic of intense metaphysical debate ever since the theory's inception early last century. However, supreme predictive power combined with direct experimental observation of some of these unusual phenomena leave little doubt as to its fundamental correctness. In fact, without quantum mechanics we could not explain the workings of a laser, nor indeed how a fridge magnet operates. Over the last several decades quantum information science has emerged to seek answers to the question: can we gain some advantage by storing, transmitting and processing information encoded in systems that exhibit these unique quantum properties? Today it is understood that the answer is yes. Many research groups around the world are working towards one of the most ambitious goals humankind has ever embarked upon: a quantum computer that promises to exponentially improve computational power for particular tasks. A number of physical systems, spanning much of modern physics, are being developed for this task---ranging from single particles of light to superconducting circuits---and it is not yet clear which, if any, will ultimately prove successful. Here we describe the latest developments for each of the leading approaches and explain what the major challenges are for the future.Comment: 26 pages, 7 figures, 291 references. Early draft of Nature 464, 45-53 (4 March 2010). Published version is more up-to-date and has several corrections, but is half the length with far fewer reference

    Electron spin coherence exceeding seconds in high purity silicon

    Full text link
    Silicon is undoubtedly one of the most promising semiconductor materials for spin-based information processing devices. Its highly advanced fabrication technology facilitates the transition from individual devices to large-scale processors, and the availability of an isotopically-purified 28^{28}Si form with no magnetic nuclei overcomes what is a main source of spin decoherence in many other materials. Nevertheless, the coherence lifetimes of electron spins in the solid state have typically remained several orders of magnitude lower than what can be achieved in isolated high-vacuum systems such as trapped ions. Here we examine electron spin coherence of donors in very pure 28^{28}Si material, with a residual 29^{29}Si concentration of less than 50 ppm and donor densities of 1014−1510^{14-15} per cm3^3. We elucidate three separate mechanisms for spin decoherence, active at different temperatures, and extract a coherence lifetime T2T_2 up to 2 seconds. In this regime, we find the electron spin is sensitive to interactions with other donor electron spins separated by ~200 nm. We apply a magnetic field gradient in order to suppress such interactions and obtain an extrapolated electron spin T2T_2 of 10 seconds at 1.8 K. These coherence lifetimes are without peer in the solid state by several orders of magnitude and comparable with high-vacuum qubits, making electron spins of donors in silicon ideal components of a quantum computer, or quantum memories for systems such as superconducting qubits.Comment: 18 pages, 4 figures, supplementary informatio

    The primary therapy chosen for patients with localized prostate cancer between the university hospital and its affiliated hospitals in Nara Uro-oncological research group registration

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>We investigated the differences between the preferential primary therapy conceived by the primary doctors and the primary therapy actually conducted for prostate cancer patients in Nara, Japan.</p> <p>Methods</p> <p>The distribution of primary therapy and clinical characteristics of 2303 prostate cancer patients - diagnosed between 2004 and 2006 at Nara Medical University and its 23 affiliated hospitals - were assessed. Moreover, the preferential primary therapy for the patients at each clinical stage (cT1-T3bN0M0) conceived by the primary doctors was investigated and compared to the actual therapy.</p> <p>Results</p> <p>Of all patients, 51% received primary androgen deprivation therapy (PADT), 30% underwent radical prostatectomy (RP), and 14% received radiation therapy (RT). The preferential primary therapy for cT1-2N0M0 was RP (92%) while 38% of the patients actually received PADT (RP: 40%). For cT3aN0M0, the preferential primary therapy was both RP and external beam radiation therapy (EBRT) while 58% of the patients actually received PADT (RP: 16%, EBRT: 24%). For cT3bN0M0, the most preferential primary therapy was EBRT (46%) while 67% of the patients actually received PADT (EBRT: 21%). This trend was more notable in the affiliated hospitals than in the University hospital. The hospitals with lower volume of RP per year significantly conducted PADT compared with those with higher volume of RP.</p> <p>Conclusions</p> <p>PADT was commonly used to treat localized prostate cancer as well as locally advanced prostate cancer in Japan. There was a definite discrepancy between the preferential primary therapy conceived by the primary doctors and the actual therapy provided to the patients.</p

    Dynamics of a Quantum Phase Transition and Relaxation to a Steady State

    Full text link
    We review recent theoretical work on two closely related issues: excitation of an isolated quantum condensed matter system driven adiabatically across a continuous quantum phase transition or a gapless phase, and apparent relaxation of an excited system after a sudden quench of a parameter in its Hamiltonian. Accordingly the review is divided into two parts. The first part revolves around a quantum version of the Kibble-Zurek mechanism including also phenomena that go beyond this simple paradigm. What they have in common is that excitation of a gapless many-body system scales with a power of the driving rate. The second part attempts a systematic presentation of recent results and conjectures on apparent relaxation of a pure state of an isolated quantum many-body system after its excitation by a sudden quench. This research is motivated in part by recent experimental developments in the physics of ultracold atoms with potential applications in the adiabatic quantum state preparation and quantum computation.Comment: 117 pages; review accepted in Advances in Physic

    Optical switching of nuclear spin–spin couplings in semiconductors

    Get PDF
    Two-qubit operation is an essential part of quantum computation. However, solid-state nuclear magnetic resonance quantum computing has not been able to fully implement this functionality, because it requires a switchable inter-qubit coupling that controls the time evolutions of entanglements. Nuclear dipolar coupling is beneficial in that it is present whenever nuclear–spin qubits are close to each other, while it complicates two-qubit operation because the qubits must remain decoupled to prevent unwanted couplings. Here we introduce optically controllable internuclear coupling in semiconductors. The coupling strength can be adjusted externally through light power and even allows on/off switching. This feature provides a simple way of switching inter-qubit couplings in semiconductor-based quantum computers. In addition, its long reach compared with nuclear dipolar couplings allows a variety of options for arranging qubits, as they need not be next to each other to secure couplings

    A spin-orbit coupled Bose-Einstein condensate

    Full text link
    Spin-orbit (SO) coupling -- the interaction between a quantum particle's spin and its momentum -- is ubiquitous in nature, from atoms to solids. In condensed matter systems, SO coupling is crucial for the spin-Hall effect and topological insulators, which are of extensive interest; it contributes to the electronic properties of materials such as GaAs, and is important for spintronic devices. Ultracold atoms, quantum many-body systems under precise experimental control, would seem to be an ideal platform to study these fascinating SO coupled systems. While an atom's intrinsic SO coupling affects its electronic structure, it does not lead to coupling between the spin and the center-of-mass motion of the atom. Here, we engineer SO coupling (with equal Rashba and Dresselhaus strengths) in a neutral atomic Bose-Einstein condensate by dressing two atomic spin states with a pair of lasers. Not only is this the first SO coupling realized in ultracold atomic gases, it is also the first ever for bosons. Furthermore, in the presence of the laser coupling, the interactions between the two dressed atomic spin states are modified, driving a quantum phase transition from a spatially spin-mixed state (lasers off) to a phase separated state (above a critical laser intensity). The location of this transition is in quantitative agreement with our theory. This SO coupling -- equally applicable for bosons and fermions -- sets the stage to realize topological insulators in fermionic neutral atom systems.Comment: 25 pages, 4 figure

    The Spin Structure of the Nucleon

    Full text link
    We present an overview of recent experimental and theoretical advances in our understanding of the spin structure of protons and neutrons.Comment: 84 pages, 29 figure
    • …
    corecore