34 research outputs found

    Discovering the highest energy neutrinos with the Payload for Ultrahigh Energy Observations (PUEO)

    Get PDF
    The Payload for Ultrahigh Energy Observations (PUEO) is a NASA Long-Duration Balloon Mission that has been selected for concept development. PUEO has unprecedented sensitivity to ultra-high energy neutrinos above 1018 eV. PUEO will be sensitive to both Askaryan emission from neutrino-induced cascades in Antarctic ice and geomagnetic emission from upward-going air showers that are a result of tau neutrino interactions. PUEO is also especially well-suited for point source and transient searches. Compared to its predecessor ANITA, PUEO achieves better than an order-of-magnitude improvement in sensitivity and lowers the energy threshold for detection, by implementing a coherent phased array trigger, adding more channels, optimizing the detection bandwidth, and implementing real-time filtering. Here we discuss the science reach and plans for PUEO, leading up to a 2024 launch

    The Payload for Ultrahigh Energy Observations (PUEO): a white paper

    Get PDF
    The Payload for Ultrahigh Energy Observations (PUEO) long-duration balloon experiment is designed to have world-leading sensitivity to ultrahigh-energy neutrinos at energies above 1 EeV. Probing this energy region is essential for understanding the extreme-energy universe at all distance scales. PUEO leverages experience from and supersedes the successful Antarctic Impulsive Transient Antenna (ANITA) program, with an improved design that drastically improves sensitivity by more than an order of magnitude at energies below 30 EeV. PUEO will either make the first significant detection of or set the best limits on ultrahigh-energy neutrino fluxes

    A search for ultrahigh-energy neutrinos associated with astrophysical sources using the third flight of ANITA

    Get PDF
    The ANtarctic Impulsive Transient Antenna (ANITA) long-duration balloon experiment is sensitive to interactions of ultrahigh-energy (E>1018 eV) neutrinos in the Antarctic ice sheet. The third flight of ANITA, lasting 22 days, began in December 2014. We develop a methodology to search for energetic neutrinos spatially and temporally coincident with potential source classes in ANITA data. This methodology is applied to several source classes: the potential IceCube-identified neutrino sources TXS 0506+056 and NGC 1068, flaring high-energy blazars reported by the Fermi All-Sky Variability Analysis, gamma-ray bursts, and supernovae. Among searches within the five source classes, one candidate was identified as associated with SN 2015D, although not at a statistically significant level. We proceed to place upper limits on the source classes. We further comment on potential application of this methodology to more sensitive future instruments

    An analysis of a tau-neutrino hypothesis for the near-horizon cosmic-ray-like events observed by ANITA-IV

    Get PDF
    We present the results of a simulation of the acceptance of the Antarctic Impulsive Transient Antenna (ANITA) to possible υτ point source fluxes detected via τ-lepton-induced air showers. This investigation is framed around the detection of four upward-going extensive air shower events observed very close to the horizon in ANITA-IV. These four events as well as the overall diffuse and point source exposure to Earth-skimming υτ are also compared against published ultrahigh-energy neutrino limits from the Pierre Auger Observatory. We find that while these four events were detected at sky coordinates close to ANITA’s maximum υτ sensitivity and were not simultaneously visible by Auger, the implied fluence necessary for ANITA to observe these events is in tension with limits set by Auger across a wide range of energies and is additionally in tension with ANITA’s Askaryan in-ice neutrino channel above 1019 eV

    Analysis of a tau neutrino origin for the near-horizon air shower events observed by the fourth flight of the Antarctic Impulsive Transient Antenna

    Get PDF
    We study in detail the sensitivity of the Antarctic Impulsive Transient Antenna (ANITA) to possible Formula Presented point source fluxes detected via Formula Presented-lepton-induced air showers. This investigation is framed around the observation of four upward-going extensive air shower events very close to the horizon seen in ANITA-IV. We find that these four upgoing events are not observationally inconsistent with Formula Presented-induced EASs from Earth-skimming Formula Presented both in their spectral properties as well as in their observed locations on the sky. These four events as well as the overall diffuse and point source exposure to Earth-skimming Formula Presented are also compared against published ultrahigh-energy neutrino limits from the Pierre Auger Observatory. While none of these four events occurred at sky locations simultaneously visible by Auger, the implied fluence necessary for ANITA to observe these events is in strong tension with limits set by Auger across a wide range of energies and is additionally in tension with ANITA’s Askaryan in-ice neutrino channel above Formula Presented. We conclude by discussing some of the technical challenges with simulating and analyzing these near horizon events and the potential for future observatories to observe similar events

    Low-threshold ultrahigh-energy neutrino search with the Askaryan Radio Array

    Get PDF
    In the pursuit of the measurement of the still-elusive ultrahigh-energy (UHE) neutrino flux at energies of order EeV, detectors using the in-ice Askaryan radio technique have increasingly targeted lower trigger thresholds. This has led to improved trigger-level sensitivity to UHE neutrinos. Working with data collected by the Askaryan Radio Array (ARA), we search for neutrino candidates at the lowest threshold achieved to date, leading to improved analysis-level sensitivities. A neutrino search on a data set with 208.7 days of livetime from the reduced-threshold fifth ARA station is performed, achieving a 68% analysis efficiency over all energies on a simulated mixed-composition neutrino flux with an expected background of 0.10-0.04+0.06 events passing the analysis. We observe one event passing our analysis and proceed to set a neutrino flux limit using a Feldman-Cousins construction. We show that the improved trigger-level sensitivity can be carried through an analysis, motivating the phased array triggering technique for use in future radio-detection experiments. We also include a projection using all available data from this detector. Finally, we find that future analyses will benefit from studies of events near the surface to fully understand the background expected for a large-scale detector

    The Calibration of the Geometry and Antenna delay in Askaryan Radio Array Station 4 and 5

    Get PDF
    The Askaryan Radio Array (ARA) experiment at the South Pole is designed to detect the radio signals produced by ultra high energy cosmic neutrino interactions in the ice. There are 5 independent ARA stations, one of which (A5) includes a low-threshold phased array trigger string. Each ARA station is designed to work as an autonomous detector. The Data Acquisition System in all ARA stations is equipped with the Ice Ray Sampler second-generation (IRS2) chip, a custom-made, application-specific integrated circuit (ASIC) for high-speed sampling and digitization. In this contribution, we describe the methodology used to calibrate the IRS2 digitizer chip and the station geometry, namely the relative timing between each pair of ARA antennas, deployed at 200 m below the Antarctic ice surface, and their geometrical positions in the ice, for ARA stations 4 and 5. Our calibration allows for proper timing correlations between incoming signals, which is crucial for radio vertex reconstruction and thus detection of ultra high energy neutrinos through the Askaryan effect. We achieve a signal timing precision on a sub-nanosecond level and an antenna position precision within 10 cm

    A Template-based UHE Neutrino Search Strategy for the Askaryan Radio Array (ARA)

    Get PDF
    The Askaryan Radio Array (ARA) is a gigaton-size neutrino radio telescope located near the geographic South Pole. ARA has five independent stations designed to detect Askaryan emission coming from the interactions between ultra-high energy neutrinos (> 10 PeV) and Antarctic ice. Each station includes of 16 antenna deployed in a matrix shape at up to 200 m deep in the ice. A simulated neutrino template, including the detector response model, was implemented in a new search technique for reducing background noise and improving the vertex reconstruction resolution. The template is used to scan through the data using the matched filter method, inspired by LIGO, looking for a low SNR neutrino signature and ultimately aiming to lower the detector’s energy threshold at the analysis level. I will present the estimated sensitivity improvements to ARA analyses through the application of the template technique with results from simulation

    A neural network based UHE neutrino reconstruction method for the Askaryan Radio Array (ARA)

    Get PDF
    The Askaryan Radio Array (ARA) is an ultra-high energy (UHE) neutrino (Eν > 1017 eV) detector at South Pole. ARA aims to utilize radio signals detected from UHE neutrino interactions in the glacial ice to infer properties about the interaction vertex as well as the incident neutrino. To retrieve these properties from experiment data, the first step is to extract timing, amplitude and frequency information from waveforms of different antennas buried in the deep ice. These features can then be utilized in a neural network to reconstruct the neutrino interaction vertex position, incoming neutrino direction and shower energy. So far, vertex can be reconstructed through interferometry while neutrino reconstruction is still under investigation. Here I will present a solution based on multi-task deep neural networks which can perform reconstruction of both vertex and incoming neutrinos with a reasonable precision. After training, this solution is capable of rapid reconstructions (e.g. 0.1 ms/event compared to 10000 ms/event in a conventional routine) useful for trigger and filter decisions, and can be easily generalized to different station configurations for both design and analysis purposes

    Implementing a Low-Threshold Analysis with the Askaryan Radio Array (ARA)

    Get PDF
    The Askaryan Radio Array (ARA) is a ground-based radio detector at the South Pole designed to capture Askaryan emission from ultra-high energy neutrinos interacting within the Antarctic ice. The newest ARA station has been equipped with a phased array trigger, in which radio signals in multiple antennas are summed in predetermined directions prior to the trigger. In this way, impulsive signals add coherently, while noise likely does not, allowing the trigger threshold to be lower than a traditional ARA station. Early results on just a fraction of available data from this new system prove the feasibility of a low-threshold analysis
    corecore