2,567 research outputs found

    Quantum computation by local measurement

    Full text link
    Quantum computation is a novel way of information processing which allows, for certain classes of problems, exponential speedups over classical computation. Various models of quantum computation exist, such as the adiabatic, circuit and measurement-based models. They have been proven equivalent in their computational power, but operate very differently. As such, they may be suitable for realization in different physical systems, and also offer different perspectives on open questions such as the precise origin of the quantum speedup. Here, we give an introduction to the one-way quantum computer, a scheme of measurement-based quantum computation. In this model, the computation is driven by local measurements on a carefully chosen, highly entangled state. We discuss various aspects of this computational scheme, such as the role of entanglement and quantum correlations. We also give examples for ground states of simple Hamiltonians which enable universal quantum computation by local measurements.Comment: 36 pages, single column, 6 figures, not published version (as restricted by the journal), please refer to ARCMP for the final published versio

    Calculating Unknown Eigenvalues with a Quantum Algorithm

    Full text link
    Quantum algorithms are able to solve particular problems exponentially faster than conventional algorithms, when implemented on a quantum computer. However, all demonstrations to date have required already knowing the answer to construct the algorithm. We have implemented the complete quantum phase estimation algorithm for a single qubit unitary in which the answer is calculated by the algorithm. We use a new approach to implementing the controlled-unitary operations that lie at the heart of the majority of quantum algorithms that is more efficient and does not require the eigenvalues of the unitary to be known. These results point the way to efficient quantum simulations and quantum metrology applications in the near term, and to factoring large numbers in the longer term. This approach is architecture independent and thus can be used in other physical implementations

    Non-Gaussian states for continuous variable quantum computation via Gaussian maps

    Get PDF
    We investigate non-Gaussian states of light as ancillary inputs for generating nonlinear transformations required for quantum computing with continuous variables. We consider a recent proposal for preparing a cubic phase state, find the exact form of the prepared state and perform a detailed comparison to the ideal cubic phase state. We thereby identify the main challenges to preparing an ideal cubic phase state and describe the gates implemented with the non-ideal prepared state. We also find the general form of operations that can be implemented with ancilla Fock states, together with Gaussian input states, linear optics and squeezing transformations, and homodyne detection with feed forward, and discuss the feasibility of continuous variable quantum computing using ancilla Fock states.Comment: 8 pages, 6 figure

    Experimental realisation of Shor's quantum factoring algorithm using qubit recycling

    Full text link
    Quantum computational algorithms exploit quantum mechanics to solve problems exponentially faster than the best classical algorithms. Shor's quantum algorithm for fast number factoring is a key example and the prime motivator in the international effort to realise a quantum computer. However, due to the substantial resource requirement, to date, there have been only four small-scale demonstrations. Here we address this resource demand and demonstrate a scalable version of Shor's algorithm in which the n qubit control register is replaced by a single qubit that is recycled n times: the total number of qubits is one third of that required in the standard protocol. Encoding the work register in higher-dimensional states, we implement a two-photon compiled algorithm to factor N=21. The algorithmic output is distinguishable from noise, in contrast to previous demonstrations. These results point to larger-scale implementations of Shor's algorithm by harnessing scalable resource reductions applicable to all physical architectures.Comment: 7 pages, 3 figure

    Adding control to arbitrary unknown quantum operations

    Get PDF
    While quantum computers promise significant advantages, the complexity of quantum algorithms remains a major technological obstacle. We have developed and demonstrated an architecture-independent technique that simplifies adding control qubits to arbitrary quantum operations-a requirement in many quantum algorithms, simulations and metrology. The technique is independent of how the operation is done, does not require knowledge of what the operation is, and largely separates the problems of how to implement a quantum operation in the laboratory and how to add a control. We demonstrate an entanglement-based version in a photonic system, realizing a range of different two-qubit gates with high fidelity.Comment: 9 pages, 8 figure

    Health literacy, health status, and healthcare utilization of Taiwanese adults: results from a national survey

    Get PDF
    Abstract Background Low health literacy is considered a worldwide health threat. The purpose of this study is to assess the prevalence and socio-demographic covariates of low health literacy in Taiwanese adults and to investigate the relationships between health literacy and health status and health care utilization. Methods A national survey of 1493 adults was conducted in 2008. Health literacy was measured using the Mandarin Health Literacy Scale. Health status was measured based on self-rated physical and mental health. Health care utilization was measured based on self-reported outpatient clinic visits, emergency room visits, and hospitalizations. Results Approximately thirty percent of adults were found to have low (inadequate or marginal) health literacy. They tended to be older, have fewer years of schooling, lower household income, and reside in less populated areas. Inadequate health literacy was associated with poorer mental health (OR, 0.57; 95% CI, 0.35-0.91). No association was found between health literacy and health care utilization even after adjusting for other covariates. Conclusions Low (inadequate and marginal) health literacy is prevalent in Taiwan. High prevalence of low health literacy is not necessarily indicative of the need for interventions. Systematic efforts to evaluate the impact of low health literacy on health outcomes in other countries would help to illuminate features of health care delivery and financing systems that may mitigate the adverse health effects of low health literacy.http://deepblue.lib.umich.edu/bitstream/2027.42/78252/1/1471-2458-10-614.xmlhttp://deepblue.lib.umich.edu/bitstream/2027.42/78252/2/1471-2458-10-614.pdfPeer Reviewe

    Quantum memory for entangled two-mode squeezed states

    Full text link
    A quantum memory for light is a key element for the realization of future quantum information networks. Requirements for a good quantum memory are (i) versatility (allowing a wide range of inputs) and (ii) true quantum coherence (preserving quantum information). Here we demonstrate such a quantum memory for states possessing Einstein-Podolsky-Rosen (EPR) entanglement. These multi-photon states are two-mode squeezed by 6.0 dB with a variable orientation of squeezing and displaced by a few vacuum units. This range encompasses typical input alphabets for a continuous variable quantum information protocol. The memory consists of two cells, one for each mode, filled with cesium atoms at room temperature with a memory time of about 1msec. The preservation of quantum coherence is rigorously proven by showing that the experimental memory fidelity 0.52(2) significantly exceeds the benchmark of 0.45 for the best possible classical memory for a range of displacements.Comment: main text 5 pages, supplementary information 3 page

    An Open-System Quantum Simulator with Trapped Ions

    Full text link
    The control of quantum systems is of fundamental scientific interest and promises powerful applications and technologies. Impressive progress has been achieved in isolating the systems from the environment and coherently controlling their dynamics, as demonstrated by the creation and manipulation of entanglement in various physical systems. However, for open quantum systems, engineering the dynamics of many particles by a controlled coupling to an environment remains largely unexplored. Here we report the first realization of a toolbox for simulating an open quantum system with up to five qubits. Using a quantum computing architecture with trapped ions, we combine multi-qubit gates with optical pumping to implement coherent operations and dissipative processes. We illustrate this engineering by the dissipative preparation of entangled states, the simulation of coherent many-body spin interactions and the quantum non-demolition measurement of multi-qubit observables. By adding controlled dissipation to coherent operations, this work offers novel prospects for open-system quantum simulation and computation.Comment: Pre-review submission to Nature. For an updated and final version see publication. Manuscript + Supplementary Informatio

    Spontaneous regression in alveolar soft part sarcoma: case report and literature review

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Sarcomas are a type of malignant tumors that arise from connective tissue. They are most of the time found in extremities</p> <p>Case presentation</p> <p>We are presenting a case of adult male patient, who was found to have huge abdominal mass and multiple gastric and duodenal polyps. Pathological diagnosis for all lesions was Alveolar soft part sarcoma. Although he complained from metastasis to both lungs and right atrium, all these deposits regressed spontaneously. Patient stated that he used some herbs (Teucrium polium, Cat Thyme) prescribed for him. No chemotherapy or radiotherapy was given. The duration of regression was about 5 months before other lesions appeared. Later on, he died secondary to brain metastasis.</p> <p>Conclusion</p> <p>ASPS is a rare type of sarcomas that affect primarily the lower limbs. This tumor does rarely metastasize to the gastrointestinal tract.</p
    corecore