624 research outputs found
Signatures of malaria-associated pathology revealed by high-resolution whole-blood transcriptomics in a rodent model of malaria.
The influence of parasite genetic factors on immune responses and development of severe pathology of malaria is largely unknown. In this study, we performed genome-wide transcriptomic profiling of mouse whole blood during blood-stage infections of two strains of the rodent malaria parasite Plasmodium chabaudi that differ in virulence. We identified several transcriptomic signatures associated with the virulent infection, including signatures for platelet aggregation, stronger and prolonged anemia and lung inflammation. The first two signatures were detected prior to pathology. The anemia signature indicated deregulation of host erythropoiesis, and the lung inflammation signature was linked to increased neutrophil infiltration, more cell death and greater parasite sequestration in the lungs. This comparative whole-blood transcriptomics profiling of virulent and avirulent malaria shows the validity of this approach to inform severity of the infection and provide insight into pathogenic mechanisms
The impact of childhood glaucoma on psychosocial functioning and quality of life: a review of the literature
We present a novel comprehensive literature review of studies of the psychosocial functioning (PF) and quality of life (QoL) of patients with childhood glaucoma and their caregivers. Our findings demonstrate variable study quality and approach, as well as inconsistent results relating to the association of glaucoma-specific factors and sociodemographic variables with measured PF and QoL. Future studies should focus on the development of culturally cognizant and standardized assessment tools, execution of multi-center longitudinal studies with global representation, evaluation of PF and QoL among siblings and childhood glaucoma providers, and implementation of interventions to improve patient and caregiver PF and QoL
A new approach to assess and predict the functional roles of proteins across all known structures
The three dimensional atomic structures of proteins provide information regarding their function; and codified relationships between structure and function enable the assessment of function from structure. In the current study, a new data mining tool was implemented that checks current gene ontology (GO) annotations and predicts new ones across all the protein structures available in the Protein Data Bank (PDB). The tool overcomes some of the challenges of utilizing large amounts of protein annotation and measurement information to form correspondences between protein structure and function. Protein attributes were extracted from the Structural Biology Knowledgebase and open source biological databases. Based on the presence or absence of a given set of attributes, a given protein’s functional annotations were inferred. The results show that attributes derived from the three dimensional structures of proteins enhanced predictions over that using attributes only derived from primary amino acid sequence. Some predictions reflected known but not completely documented GO annotations. For example, predictions for the GO term for copper ion binding reflected used information a copper ion was known to interact with the protein based on information in a ligand interaction database. Other predictions were novel and require further experimental validation. These include predictions for proteins labeled as unknown function in the PDB. Two examples are a role in the regulation of transcription for the protein AF1396 from Archaeoglobus fulgidus and a role in RNA metabolism for the protein psuG from Thermotoga maritima
A fully human anti-Ep-CAM scFv-beta-glucuronidase fusion protein for selective chemotherapy with a glucuronide prodrug
Monoclonal antibodies against tumour-associated antigens could be useful to deliver enzymes selectively to the site of a tumour for activation of a non-toxic prodrug. A completely human fusion protein may be advantageous for repeated administration, as host immune responses may be avoided. We have constructed a fusion protein consisting of a human single chain Fv antibody, C28, against the epithelial cell adhesion molecule and the human enzyme β-glucuronidase. The sequences encoding C28 and human enzyme β-glucuronidase were joined by a sequence encoding a flexible linker, and were preceded by the IgGκ signal sequence for secretion of the fusion protein. A CHO cell line was engineered to secrete C28-β-glucuronidase fusion protein. Antibody specificity and enzyme activity were retained in the secreted fusion protein that had an apparent molecular mass of 100 kDa under denaturing conditions. The fusion protein was able to convert a non-toxic prodrug of doxorubicin, N-[4-doxorubicin-N-carbonyl(oxymethyl)phenyl]-O-β-glucuronyl carbamate to doxorubicin, resulting in cytotoxicity. A bystander effect was demonstrated, as doxorubicin was detected in all cells after N-[4-doxorubicin-N-carbonyl(oxymethyl)phenyl]-O-β-glucuronyl carbamate administration when only 10% of the cells expressed the fusion protein. This is the first fully human and functional fusion protein consisting of an scFv against epithelial cell adhesion molecule and human enzyme β-glucuronidase for future use in tumour-specific activation of a non-toxic glucuronide prodrug
Multiple populations in globular clusters. Lessons learned from the Milky Way globular clusters
Recent progress in studies of globular clusters has shown that they are not
simple stellar populations, being rather made of multiple generations. Evidence
stems both from photometry and spectroscopy. A new paradigm is then arising for
the formation of massive star clusters, which includes several episodes of star
formation. While this provides an explanation for several features of globular
clusters, including the second parameter problem, it also opens new
perspectives about the relation between globular clusters and the halo of our
Galaxy, and by extension of all populations with a high specific frequency of
globular clusters, such as, e.g., giant elliptical galaxies. We review progress
in this area, focusing on the most recent studies. Several points remain to be
properly understood, in particular those concerning the nature of the polluters
producing the abundance pattern in the clusters and the typical timescale, the
range of cluster masses where this phenomenon is active, and the relation
between globular clusters and other satellites of our Galaxy.Comment: In press (The Astronomy and Astrophysics Review
EBP1 Is a Novel E2F Target Gene Regulated by Transforming Growth Factor-β
Regulation of gene expression requires transcription factor binding to specific DNA elements, and a large body of work has focused on the identification of such sequences. However, it is becoming increasingly clear that eukaryotic transcription factors can exhibit widespread, nonfunctional binding to genomic DNA sites. Conversely, some of these proteins, such as E2F, can also modulate gene expression by binding to non-consensus elements. E2F comprises a family of transcription factors that play key roles in a wide variety of cellular functions, including survival, differentiation, activation during tissue regeneration, metabolism, and proliferation. E2F factors bind to the Erb3-binding protein 1 (EBP1) promoter in live cells. We now show that E2F binding to the EBP1 promoter occurs through two tandem DNA elements that do not conform to typical consensus E2F motifs. Exogenously expressed E2F1 activates EBP1 reporters lacking one, but not both sites, suggesting a degree of redundancy under certain conditions. E2F1 increases the levels of endogenous EBP1 mRNA in breast carcinoma and other transformed cell lines. In contrast, in non-transformed primary epidermal keratinocytes, E2F, together with the retinoblastoma family of proteins, appears to be involved in decreasing EBP1 mRNA abundance in response to growth inhibition by transforming growth factor-β1. Thus, E2F is likely a central coordinator of multiple responses that culminate in regulation of EBP1 gene expression, and which may vary depending on cell type and context
A qualitative study of culturally embedded factors in complementary and alternative medicine use
Abstract Background Within the intercultural milieu of medical pluralism, a nexus of worldviews espousing distinct explanatory models of illness, our research aims at exploring factors leading to complementary and alternative medicine (CAM) use with special attention to their cultural context. Methods The results are based on medical anthropological fieldwork (participant observation and in-depth interviews) spanning a period from January 2015 to May 2017 at four clinics of Traditional Chinese Medicine in Budapest, Hungary. Participant observation involved 105 patients (males N = 42); in-depth interviews were conducted with patients (N = 9) and practitioners (N = 9). The interviews were coded with Interpretative Phenomenological Analysis; all information was aggregated employing Atlas.ti software. Results In order to avoid the dichotomization of “push and pull factors,” results obtained from the fieldwork and interviews were structured along milestones of the patient journey. These points of reference include orientation among sources of information, biomedical diagnosis, patient expectations and the physician-patient relationship, the biomedical treatment trajectory and reasons for non-adherence, philosophical congruence, and alternate routes of entry into the world of CAM. All discussed points which are a departure from the strictly western therapy, entail an underlying socio-cultural disposition and must be scrutinized in this context. Conclusions The influence of one’s culturally determined explanatory model is ubiquitous from the onset of the patient journey and exhibits a reciprocal relationship with subjective experience. Firsthand experience (or that of the Other) signifies the most reliable source of information in matters of illness and choice of therapy. Furthermore, the theme of (building and losing) trust is present throughout the patient journey, a determining factor in patient decision-making and dispositions toward both CAM and biomedicine
Muramyl Dipeptide Induces NOD2-Dependent Ly6Chigh Monocyte Recruitment to the Lungs and Protects Against Influenza Virus Infection
Bacterial peptidoglycan-derived muramyl dipeptide (MDP) and derivatives have long-recognized antiviral properties but their mechanism of action remains unclear. In recent years, the pattern-recognition receptor NOD2 has been shown to mediate innate responses to MDP. Here, we show that MDP treatment of mice infected with Influenza A virus (IAV) significantly reduces mortality, viral load and pulmonary inflammation in a NOD2-dependent manner. Importantly, the induction of type I interferon (IFN) and CCL2 chemokine was markedly increased in the lungs following MDP treatment and correlated with a NOD2-dependent enhancement in circulating monocytes. Mechanistically, the protective effect of MDP could be explained by the NOD2-dependent transient increase in recruitment of Ly6Chigh “inflammatory” monocytes and, to a lesser extent, neutrophils to the lungs. Indeed, impairment in both Ly6Chigh monocyte recruitment and survival observed in infected Nod2-/- mice treated with MDP was recapitulated in mice deficient for the chemokine receptor CCR2 required for CCL2-mediated Ly6Chigh monocyte migration from the bone marrow into the lungs. MDP-induced pulmonary monocyte recruitment occurred normally in IAV-infected and MDP-treated Ips-1-/- mice. However, IPS-1 was required for improved survival upon MDP treatment. Finally, mycobacterial N-glycolyl MDP was more potent than N-acetyl MDP expressed by most bacteria at reducing viral burden while both forms of MDP restored pulmonary function following IAV challenge. Overall, our work sheds light on the antiviral mechanism of a clinically relevant bacterial-derived compound and identifies the NOD2 pathway as a potential therapeutic target against IAV
Serum 25-Hydroxyvitamin D and the Incidence of Acute Viral Respiratory Tract Infections in Healthy Adults
Declining serum concentrations of 25-hydroxyvitamin D seen in the fall and winter as distance increases from the equator may be a factor in the seasonal increased prevalence of influenza and other viral infections. This study was done to determine if serum 25-hydroxyvitamin D concentrations correlated with the incidence of acute viral respiratory tract infections.In this prospective cohort study serial monthly concentrations of 25-hydroxyvitamin D were measured over the fall and winter 2009-2010 in 198 healthy adults, blinded to the nature of the substance being measured. The participants were evaluated for the development of any acute respiratory tract infections by investigators blinded to the 25-hydroxyvitamin D concentrations. The incidence of infection in participants with different concentrations of vitamin D was determined. One hundred ninety-five (98.5%) of the enrolled participants completed the study. Light skin pigmentation, lean body mass, and supplementation with vitamin D were found to correlate with higher concentrations of 25-hydroxyvitamin D. Concentrations of 38 ng/ml or more were associated with a significant (p<0.0001) two-fold reduction in the risk of developing acute respiratory tract infections and with a marked reduction in the percentages of days ill.Maintenance of a 25-hydroxyvitamin D serum concentration of 38 ng/ml or higher should significantly reduce the incidence of acute viral respiratory tract infections and the burden of illness caused thereby, at least during the fall and winter in temperate zones. The findings of the present study provide direction for and call for future interventional studies examining the efficacy of vitamin D supplementation in reducing the incidence and severity of specific viral infections, including influenza, in the general population and in subpopulations with lower 25-hydroxyvitamin D concentrations, such as pregnant women, dark skinned individuals, and the obese
- …