15 research outputs found

    Phospholipase D signaling: orchestration by PIP2 and small GTPases

    Get PDF
    Hydrolysis of phosphatidylcholine by phospholipase D (PLD) leads to the generation of the versatile lipid second messenger, phosphatidic acid (PA), which is involved in fundamental cellular processes, including membrane trafficking, actin cytoskeleton remodeling, cell proliferation and cell survival. PLD activity can be dramatically stimulated by a large number of cell surface receptors and is elaborately regulated by intracellular factors, including protein kinase C isoforms, small GTPases of the ARF, Rho and Ras families and, particularly, by the phosphoinositide, phosphatidylinositol 4,5-bisphosphate (PIP2). PIP2 is well known as substrate for the generation of second messengers by phospholipase C, but is now also understood to recruit and/or activate a variety of actin regulatory proteins, ion channels and other signaling proteins, including PLD, by direct interaction. The synthesis of PIP2 by phosphoinositide 5-kinase (PIP5K) isoforms is tightly regulated by small GTPases and, interestingly, by PA as well, and the concerted formation of PIP2 and PA has been shown to mediate receptor-regulated cellular events. This review highlights the regulation of PLD by membrane receptors, and describes how the close encounter of PLD and PIP5K isoforms with small GTPases permits the execution of specific cellular functions

    Measurement of radium concentration in water with Mn-coated beads at the Sudbury Neutrino Observatory

    No full text
    We describe a method to measure the concentration of 224Ra and 226Ra in the heavy water target used to detect solar neutrinos at the Sudbury Neutrino Observatory and in the surrounding light water shielding. A water volume of 50-400 m3 from the detector is passed through columns which contain beads coated with a compound of manganese oxide onto which the Ra dissolved in the water is adsorbed. The columns are removed, dried, and mounted below an electrostatic chamber into which the Rn from the decay of trapped Ra is continuously flowed by a stream of N2 gas. The subsequent decay of Rn gives charged Po ions which are swept by the electric field onto a solid-state 伪 counter. The content of Ra in the water is inferred from the measured decay rates of 212Po, 214Po, 216Po, and 218Po. The Ra extraction efficiency is > 95%, the counting efficiency is 24% for 214Po and 6% for 216Po, and the method can detect a few atoms of 224Ra per m3 and a few tens of thousands of atoms of 226Ra per m3. Converted to equivalent equilibrium values of the topmost elements of the natural radioactive chains, the detection limit in a single assay is a few times 10-16 g Th or U/cm3. The results of some typical assays are presented and the contributions to the systematic error are discussed. 漏 2003 Elsevier Science B.V. All rights reserved
    corecore