746 research outputs found
A cDNA microarray approach to decipher sunflower (Helianthus annuus) responses to the necrotrophic fungus Phoma macdonaldii
To identify the genes involved in the partial resistance of sunflower (Helianthus annuus) to the necrotrophic fungus Phoma macdonaldii, we developed a 1000âelement cDNA microarray containing carefully chosen genes putatively involved in primary metabolic pathways, signal transduction and biotic stress responses. A twoâpass general linear model was used to normalize the data and then to detect differentially expressed genes. This method allowed us to identify 38 genes differentially expressed among genotypes, treatments and times, mainly belonging to plant defense, signaling pathways and amino acid metabolism. Based on a set of genes whose differential expression was highly significant, we propose a model in which negative regulation of a dualâspecificity MAPK phosphatase could be implicated in sunflower defense mechanisms against the pathogen. The resulting activation of the MAP kinase cascade could subsequently trigger defense responses (e.g. thaumatin biosynthesis and phenylalanine ammonia lyase activation), under the control of transcription factors belonging to MYB and WRKY families. Concurrently, the activation of protein phosphatase 2A (PP2A), which is implicated in cell death inhibition, could limit pathogen development. The results reported here provide a valuable first step towards the understanding and analysis of the P. macdonaldiiâsunflower interaction
Normative equations for central augmentation index:Assessment of inter-population applicability and how it could be improved
Common reference values of arterial stiffness indices could be effective screening tool in detecting vascular phenotypes at risk. However, populations of the same ethnicity may differ in vascular phenotype due to different environmental pressure. We examined applicability of normative equations for central augmentation index (cAIx) derived from Danish population with low cardiovascular risk on the corresponding Croatian population from the Mediterranean area. Disagreement between measured and predicted cAIx was assessed by Bland-Altman analysis. Both, cAIx-age distribution and normative equation fitted on Croatian data were highly comparable to Danish low-risk sample. Contrarily, Bland-Altman analysis of cAIx disagreement revealed a curvilinear deviation from the line of full agreement indicating that the equations were not equally applicable across age ranges. Stratification of individual data into age decades eliminated curvilinearity in all but the 30â39 (men) and 40â49 (women) decades. In other decades, linear disagreement independent of age persisted indicating that cAIx determinants other than age were not envisaged/compensated for by proposed equations. Therefore, established normative equations are equally applicable to both Nordic and Mediterranean populations but are of limited use. If designed for narrower age ranges, the equationsâ sensitivity in detecting vascular phenotypes at risk and applicability to different populations could be improved
Microarray Method for the Rapid Detection of GlycosaminoglycanâProtein Interactions
Glycosaminoglycans (GAGs) perform numerous vital functions within the body. As major components of
the extracellular matrix, these polysaccharides participate in a diverse array of cell-signaling events. We have
developed a simple microarray assay for the evaluation of protein binding to various GAG subclasses. In a
single experiment, the binding to all members of the GAG family can be rapidly determined, giving insight
into the relative specificity of the interactions and the importance of specific sulfation motifs. The arrays
are facile to prepare from commercially available materials
Glucosamine increases hyaluronic acid production in human osteoarthritic synovium explants
Background. Glucosamine (GlcN) used by patients with osteoarthritis was demonstrated to reduce pain, but the working mechanism is still not clear. Viscosupplementation with hyaluronic acid (HA) is also described to reduce pain in osteoarthritis. The synthesis of HA requires GlcN as one of its main building blocks. We therefore hypothesized that addition of GlcN might increase HA production by synovium tissue. Methods. Human osteoarthritic synovium explants were obtained at total knee surgery and pre-cultured for 1 day. The experimental conditions consisted of a 2 days continuation of the culture with addition of N-Acetyl-glucosamine (GlcN-Ac; 5 mM), glucosamine-hydrochloride (GlcN-HCl; 0.5 and 5 mM), glucose (Gluc; 0.5 and 5 mM). Hereafter HA production was measured in culture medium supernatant using an enzyme-linked binding protein assay. Real time RT-PCR was performed for hyaluronic acid synthase (HAS) 1, 2 and 3 on RNA isolated from the explants. Results. 0.5 mM
Synergistic Effect of Hyaluronate Fragments in Retinaldehyde-Induced Skin Hyperplasia Which Is a Cd44-Dependent Phenomenon
BACKGROUND: CD44 is a polymorphic proteoglycan and functions as the principal cell-surface receptor for hyaluronate (HA). Heparin-binding epidermal growth factor (HB-EGF) activation of keratinocyte erbB receptors has been proposed to mediate retinoid-induced epidermal hyperplasia. We have recently shown that intermediate size HA fragments (HAFi) reverse skin atrophy by a CD44-dependent mechanism. METHODOLOGY AND PRINCIPAL FINDINGS: Treatment of primary mouse keratinocyte cultures with retinaldehyde (RAL) resulted in the most significant increase in keratinocyte proliferation when compared with other retinoids, retinoic acid, retinol or retinoyl palmitate. RAL and HAFi showed a more significant increase in keratinocyte proliferation than RAL or HAFi alone. No proliferation with RAL was observed in CD44-/- keratinocytes. HA synthesis inhibitor, 4-methylumbelliferone inhibited the proliferative effect of RAL. HB-EGF, erbB1, and tissue inhibitor of MMP-3 blocking antibodies abrogated the RAL- or RAL- and HAFi-induced keratinocyte proliferation. Topical application of RAL or RAL and HAFi for 3 days caused a significant epidermal hyperplasia in the back skin of wild-type mice but not in CD44-/- mice. Topical RAL and HAFi increased epidermal CD44 expression, and the epidermal and dermal HA. RAL induced the expression of active HB-EGF and erbB1. However, treatment with RAL and HAFi showed a more significant increase in pro-HB-EGF when compared to RAL or HAFi treatments alone. We then topically applied RAL and HAFi twice a day to the forearm skin of elderly dermatoporosis patients. After 1 month of treatment, we observed a significant clinical improvement. CONCLUSIONS AND SIGNIFICANCE: Our results indicate that (i) RAL-induced in vitro and in vivo keratinocyte proliferation is a CD44-dependent phenomenon and requires the presence of HA, HB-EGF, erbB1 and MMPs, (ii) RAL and HAFi show a synergy in vitro and in vivo in mouse skin, and (iii) the combination of RAL and HAFi seems to have an important therapeutic effect in dermatoporosis
Evaluation of Staphylococcus aureus Nasal Carriage Screening before Vascular Surgery
INTRODUCTION: Staphylococcus aureus is the most important pathogen in the development of surgical site infections (SSI). Patients who carry S. aureus in the nose are at increased risk for the development of SSI in cardiothoracic and orthopedic surgery. In these populations it has been shown that the risk for SSI can be substantially reduced by eradicating S. aureus carriage. For vascular surgery the relation between nasal carriage and surgical site infections has not been clearly investigated. For this reason we performed this study to analyze the relation between S. aureus nasal carriage and SSI in our vascular surgery population. METHODS: A prospective cohort study was undertaken, including all patients undergoing vascular surgery between January first 2010 and December 31th 2010. Before surgery patients were screened for S. aureus nasal carriage using a PCR technique. The presence of SSI was recorded based on criteria of the CDC. RESULTS: Screening was performed in 224. Of those, 55 (24.5%) were positive, 159 (71.0%) were negative and 10 (4.5%) were inconclusive. In the screened vascular population 4 S. aureus SSI occurred in the 55 carriers compared with 6 in 159 non-carriers (p=0.24). A stratified analysis revealed a 10-fold increased risk in nasal carriers undergoing central reconstruction surgery (3 S. aureus SSI in 20 procedures versus 1 in 65 procedures in non-carriers, p=0.039). DISCUSSION: In patients undergoing central reconstruction surgery nasals carriers are at increased risk for the development of S. aureus SSI. These patients will probably benefit from perioperative treatment to eradicate nasal carriage
Electrical behavior of MIS devices based on Si nanoclusters embedded in SiOxNy and SiO2 films
We examined and compared the electrical properties of silica (SiO2) and silicon oxynitride (SiOxNy) layers embedding silicon nanoclusters (Sinc) integrated in metal-insulator-semiconductor (MIS) devices. The technique used for the deposition of such layers is the reactive magnetron sputtering of a pure SiO2 target under a mixture of hydrogen/argon plasma in which nitrogen is incorporated in the case of SiOxNy layer. Al/SiOxNy-Sinc/p-Si and Al/SiO2-Sinc/p-Si devices were fabricated and electrically characterized. Results showed a high rectification ratio (>104) for the SiOxNy-based device and a resistive behavior when nitrogen was not incorporating (SiO2-based device). For rectifier devices, the ideality factor depends on the SiOxNy layer thickness. The conduction mechanisms of both MIS diode structures were studied by analyzing thermal and bias dependences of the carriers transport in relation with the nitrogen content
Roles of hyaluronan in bone resorption
BACKGROUND: Hyaluronan, an unsulfated glycosaminoglycan, while being closely linked to osteoclast function several years ago, has received little attention lately. Given recent new knowledge of hyaluronan's possible cell binding abilities, it is important to re-examine the role of this polysaccharide in bone homeostasis. DISCUSSION: Previously published data demonstrating a linkage between induction of hyaluronan synthesis and osteoclast-mediated bone resorption are reviewed. Suggestions are made involving the cell binding ability of hyaluronan and its potential to mediate osteoclast binding to bone surfaces and its potential to serve as a diffusion barrier and participate in the sealing zone required for osteoclast-mediated bone resorption. SUMMARY: This brief article summarizes previous studies linking HA to bone resorption and suggests roles for hyaluronan in the process of bone resorption
Genomic organisation and alternative splicing of mouse and human thioredoxin reductase 1 genes
BACKGROUND: Thioredoxin reductase (TR) is a redox active protein involved in many cellular processes as part of the thioredoxin system. Presently there are three recognised forms of mammalian thioredoxin reductase designated as TR1, TR3 and TGR, that represent the cytosolic, mitochondrial and novel forms respectively. In this study we elucidated the genomic organisation of the mouse (Txnrd1) and human thioredoxin reductase 1 genes (TXNRD1) through library screening, restriction mapping and database mining. RESULTS: The human TXNRD1 gene spans 100 kb of genomic DNA organised into 16 exons and the mouse Txnrd1 gene has a similar exon/intron arrangement. We also analysed the alternative splicing patterns displayed by the mouse and human thioredoxin reductase 1 genes and mapped the different mRNA isoforms with respect to genomic organisation. These isoforms differ at the 5' end and encode putative proteins of different molecular mass. Genomic DNA sequences upstream of mouse exon 1 were compared to the human promoter to identify conserved elements. CONCLUSIONS: The human and mouse thioredoxin reductase 1 gene organisation is highly conserved and both genes exhibit alternative splicing at the 5' end. The mouse and human promoters share some conserved sequences
Mechanisms driving variability in the ocean forcing of Pine Island Glacier
Pine Island Glacier (PIG) terminates in a rapidly melting ice shelf, and ocean circulation and temperature are implicated in the retreat and growing contribution to sea level rise of PIG and nearby glaciers. However, the variability of the ocean forcing of PIG has been poorly constrained due to a lack of multi-year observations. Here we show, using a unique record close to the Pine Island Ice Shelf (PIIS), that there is considerable oceanic variability at seasonal and interannual timescales, including a pronounced cold period from October 2011 to May 2013. This variability can be largely explained by two processes: cumulative ocean surface heat fluxes and sea ice formation close to PIIS; and interannual reversals in ocean currents and associated heat transport within Pine Island Bay, driven by a combination of local and remote forcing. Local atmospheric forcing therefore plays an important role in driving oceanic variability close to PIIS
- âŠ